Sense, Act, and Scale
The path to improving building energy efficiency can be paved with the framework of sense, act, and scale say authors Bharathan Balaji, an Amazon senior research scientist within the company's Devices organization, and Rob Aldrich, an Amazon Web Services senior sustainability strategist.

Creating sustainable, data-driven buildings

As office buildings become smarter, it is easier to configure them with sustainability management in mind.

Editor’s note: This article is adapted from a keynote presentation Bharathan Balaji , an Amazon senior research scientist within the company’s Devices organization, delivered in June at the 17th International Conference on Intelligent Environments . It is further informed by the book "IP-Enabled Energy Management, A Proven Strategy for Administering Energy as a Service " and its author, Rob Aldrich, Amazon Web Services senior sustainability strategist.

Buildings generate about 28% of the global greenhouse gas emissions today. The United Nations Global Status Report projects that buildings need to be at least 30% more energy efficient to achieve Paris Agreement goals.

How can we achieve that 30% energy efficiency target?

The path to reducing our emissions by improving building energy efficiency can be paved with the framework of sense, act, and scale. We need to sense to ascertain efficiency gaps within buildings. We need solutions that act on the information to achieve energy savings. And finally, we need to scale solutions so they get implemented broadly. Here is how this proposed framework can help us achieve our goals.

Sense

For office buildings that are smart and connected, the data set is rich and has much of the granular, sustainability data needed to drive change. Electricity and gas meters tell us how much energy is being consumed by a building, occupancy sensors tell us the number of people in the building, and temperature sensors tell us how much energy we need to cool a room. Sensors are the source of our information and the key to unlocking energy efficiency gaps. Even simple dashboards with such data can motivate users to save energy.

These types of sensors are abundant in modern buildings. However, many of them are wired sensors that are part of the building’s original design, and it is expensive to modify or install new sensors. Office buildings have a life of 50+ years, and sensor technology advances far more rapidly. Wireless sensors undoubtedly reduce communications costs, but they still need to be powered through wires, or use batteries that significantly increase maintenance costs at scale (imagine changing the batteries in every room of an office building).

New sensor options provide for ambient energy harvesting. These wireless sensors work by scavenging energy from the environment such as using ambient light, ventilation air flow, or hot water pipes. These sensors can minimize both energy and communications costs, but scavenged energy is insufficient to sense 24x7. We can improve reliability by predicting the environmental patterns and judiciously using the available energy.

A recent paper in SenSys (coauthored by Bharathan, lead author of this article) showed that reinforcement-learning-based scheduling of energy harvesting sensors can detect 93% of events in a real-world deployment. While the small percentage of missed events make these sensors ineligible for use in essential services, we can use the data from these inexpensive sensors opportunistically to create a rich information layer that helps save energy.

Information Bottleneck: Senors

This new, rich information layer can drive the return on investment (ROI) that has been lacking in many sensor installations. Energy and data managers can provide the missing link between top-end sustainability initiatives and the many different sensor options that exist in buildings. Furthermore, the cost of sensor architectures can be reduced by focusing only on the key data sources that support a given use case. 

For this article we chose to focus primarily on building sustainability data: energy, occupancy, emissions, air and water. This focus helps enable an estimated ROI because you already have a use case that defines how you will act on the information available. The use case for sustainability is to reduce wasted energy while moving to low greenhouse gas (GhG) fuel sources.  Informed by sensor data, the actions taken in support of these goals can be the mechanism by which savings are achieved.

Act

The traditional way to make buildings more energy efficient is to inspect the equipment, install sensors to measure baseline energy consumption, fix faults, upgrade equipment, and optimize equipment configuration. Heating, ventilation and air conditioning (HVAC) systems typically comprise the largest portion of building energy use, and many of the efficiency measures target HVAC improvements. These methods work, and can lead to more than 10% reductions in building energy use. The entire process is often referred to as building retrofitting through performance contracting.

However, two issues with the above approach typically block adoption. First, there is an upfront cost to hire experts and upgrade equipment. The ROI can take years. Second, there is limited scope for innovation beyond the template followed during commissioning. Building innovation is stifled by vertically integrated systems and an inability to easily deploy third-party applications. One of the primary reasons for the explosive growth in the computing industry is a standard interface and ease of application installation. An analogous system for buildings will create new opportunities to save energy. The innovation opportunities with a standardized building information system is highlighted with three use cases below. It is easy to create such a system with current technologies; the figure below shows a high-level architecture.

Building information system architecture

Occupancy-based control

The idea is simple: if we shut off systems that aren’t required when people aren’t present, we save energy. However, detecting occupancy reliably in a privacy-preserving manner is challenging, and most buildings today keep the lights (and HVAC) on even when no one is present. A paper published in SenSys (coauthored by Bharathan) showed that it is possible to infer occupancy using WiFi data, building floor plans, and personnel office room assignments. Among the study participants, peak building occupancy was just 60% (see figure below), and occupancy-based control saved 18% of HVAC electricity use by controlling one-quarter of the building area. The proposed solution simply leverages existing building infrastructure and is inexpensive to deploy. This type of solution is possible only because the information across different systems is exchanged freely.

Building Occupancy Trends

Fault detection

Fixing faults is core to building maintenance, but it is challenging to identify energy-wasting faults as they are difficult to notice, unlike a leak or an uncomfortable temperature. Typical building-fault detection relies on protocols established by experts, but these rules do not provide sufficient prioritization information, nor how much energy they waste.

Sophisticated fault detection algorithms have been published in literature, yet these are not deployed in practice because of vendor- locked systems. Using one year of building data, researchers (Bharathan was a coauthor) developed a simple machine learning algorithm that looks for rooms that do not follow typical temperature patterns. The algorithm identified 88 faults within the building’s HVAC system after an expert fixed all the faults found during an inspection. Many of these faults had existed for years, and resulted in estimated 410.3MWh/year savings. Again, the key component to this solution: easy access to building data.

Software thermostat

The thermostat is the only interface between building occupants and the energy-intensive HVAC system. And yet, in most buildings, occupants don’t know where the thermostat is or how to use it. The HVAC system’s primary function is to keep occupants comfortable so that they can be productive. But without thermostat feedback, occupants can end up being uncomfortable and waste energy.

With the building information system, researchers (Bharathan and collaborators) built a software version of the thermostat to address these concerns (screenshot below). The application was an instant hit and remains popular eight years after its launch. The resulting user study published in Ubicomp showed that users were frustrated with the old thermostat. In fact, one user actually taped a manila envelope on the vent to stop cold air from blowing. The software thermostat helped users precisely control their environment and send complaints if needed. The HVAC maintenance personnel were worried that the interface would lead to a flood of complaints that they weren’t staffed to handle. Usage data showed that most users were happy to use the application without giving any feedback. The few complaints received led to identification of major faults, such as a thermostat being blocked by a computer.

Software thermostat

The three use cases above didn’t require additional sensor installations and simply leveraged existing information. With low-cost solutions, we can attract building owners to adopt solutions that save energy. But we need additional incentives within the building industry to create these low-cost solutions that can have large-scale impact.

These use cases demonstrate that sustainable design doesn’t stop at the brick and mortar of the building. It should carry through to how the energy, emissions, air, water and waste can be managed as systems across buildings. As companies worldwide embark on making their buildings more sustainable, it will be critical to have a data-driven measure of success. The sense and act steps allow each company to look at what is common in the data model today, get started, assess the value, and scale as needed using open-source tools.

Scale

Even when an attractive energy-saving solution is available, it is difficult to deploy the solution at scale. This is because each building is unique, from its infrastructure and how it is used, to the software used to manage daily operations, and how it changes over time. While the fundamental components of a building remain the same (e.g., rooms, smoke sensors, ventilation fans), each vendor treats them differently. When we try to deploy a solution to a building, the discrepancies between vendor representations become difficult to resolve automatically.

In the computing industry, on other hand, it is easy for us to install an application without worrying about the manufacturer or provider because of the use of specifications (e.g., standard protocols for WiFi) and programming interfaces (e.g., Android OS for the phone). Researchers (including Bharathan) created such a standard interface for buildings with the Brick schema, where the building components and their connections to each other are represented through a knowledge graph. The figure below shows a Brick representation of a toy building with two rooms and a few sensors. Brick is now an industry consortium with growing demand, and is in the process of being integrated into building standards.

Given a standard representation such as Brick, we still have the task of representing the existing building in this new format, which can take manual effort and be slow to deploy. Using machine-learning techniques in natural language processing, we can automate this translation and minimize manual effort. The algorithm’s performance improves as more buildings are mapped to Brick and it learns from representation patterns across buildings.

The Brick schema

With the sense, act and scale framework, we envision a day when it will be as easy to configure a building as it is our phones today. We can improve the information available to building managers by using low-cost sensors, use the available information to develop innovations that save energy, and deploy the solution to many buildings with use of a knowledge graph.

Getting started

We are seeing early success in using the sense, act, scale approach in our AWS Sustainability Services practice to optimize how buildings report their sustainability data through the cloud.  It solves several problems by providing a simple framework to plan how our top-level sustainability strategy can be supported by specific building-optimization steps, underpinned by a semi-standardized data model.

The lack of standardization across building management systems has resulted in difficulties in accessing the data. Now that those data acquisition problems are being solved through advances in IoT and API, it opens up new opportunities to expose, analyze and report data that was previously difficult or costly to acquire.  With new advances like the Brick schema, we are making advances in how we can manage building assets at scale, just like servers, laptops and phones.

We are starting to see the potential to move the world from a building management systems approach; one building, one manager to a building systems management approach; many buildings, one manager. Energy efficiency gains of 30% or more are more feasible when we automate energy-control policies across all buildings at the push of a button.

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.