Sense, Act, and Scale
The path to improving building energy efficiency can be paved with the framework of sense, act, and scale say authors Bharathan Balaji, an Amazon senior research scientist within the company's Devices organization, and Rob Aldrich, an Amazon Web Services senior sustainability strategist.

Creating sustainable, data-driven buildings

As office buildings become smarter, it is easier to configure them with sustainability management in mind.

Editor’s note: This article is adapted from a keynote presentation Bharathan Balaji , an Amazon senior research scientist within the company’s Devices organization, delivered in June at the 17th International Conference on Intelligent Environments . It is further informed by the book "IP-Enabled Energy Management, A Proven Strategy for Administering Energy as a Service " and its author, Rob Aldrich, Amazon Web Services senior sustainability strategist.

Buildings generate about 28% of the global greenhouse gas emissions today. The United Nations Global Status Report projects that buildings need to be at least 30% more energy efficient to achieve Paris Agreement goals.

How can we achieve that 30% energy efficiency target?

The path to reducing our emissions by improving building energy efficiency can be paved with the framework of sense, act, and scale. We need to sense to ascertain efficiency gaps within buildings. We need solutions that act on the information to achieve energy savings. And finally, we need to scale solutions so they get implemented broadly. Here is how this proposed framework can help us achieve our goals.

Sense

For office buildings that are smart and connected, the data set is rich and has much of the granular, sustainability data needed to drive change. Electricity and gas meters tell us how much energy is being consumed by a building, occupancy sensors tell us the number of people in the building, and temperature sensors tell us how much energy we need to cool a room. Sensors are the source of our information and the key to unlocking energy efficiency gaps. Even simple dashboards with such data can motivate users to save energy.

These types of sensors are abundant in modern buildings. However, many of them are wired sensors that are part of the building’s original design, and it is expensive to modify or install new sensors. Office buildings have a life of 50+ years, and sensor technology advances far more rapidly. Wireless sensors undoubtedly reduce communications costs, but they still need to be powered through wires, or use batteries that significantly increase maintenance costs at scale (imagine changing the batteries in every room of an office building).

New sensor options provide for ambient energy harvesting. These wireless sensors work by scavenging energy from the environment such as using ambient light, ventilation air flow, or hot water pipes. These sensors can minimize both energy and communications costs, but scavenged energy is insufficient to sense 24x7. We can improve reliability by predicting the environmental patterns and judiciously using the available energy.

A recent paper in SenSys (coauthored by Bharathan, lead author of this article) showed that reinforcement-learning-based scheduling of energy harvesting sensors can detect 93% of events in a real-world deployment. While the small percentage of missed events make these sensors ineligible for use in essential services, we can use the data from these inexpensive sensors opportunistically to create a rich information layer that helps save energy.

Information Bottleneck: Senors

This new, rich information layer can drive the return on investment (ROI) that has been lacking in many sensor installations. Energy and data managers can provide the missing link between top-end sustainability initiatives and the many different sensor options that exist in buildings. Furthermore, the cost of sensor architectures can be reduced by focusing only on the key data sources that support a given use case. 

For this article we chose to focus primarily on building sustainability data: energy, occupancy, emissions, air and water. This focus helps enable an estimated ROI because you already have a use case that defines how you will act on the information available. The use case for sustainability is to reduce wasted energy while moving to low greenhouse gas (GhG) fuel sources.  Informed by sensor data, the actions taken in support of these goals can be the mechanism by which savings are achieved.

Act

The traditional way to make buildings more energy efficient is to inspect the equipment, install sensors to measure baseline energy consumption, fix faults, upgrade equipment, and optimize equipment configuration. Heating, ventilation and air conditioning (HVAC) systems typically comprise the largest portion of building energy use, and many of the efficiency measures target HVAC improvements. These methods work, and can lead to more than 10% reductions in building energy use. The entire process is often referred to as building retrofitting through performance contracting.

However, two issues with the above approach typically block adoption. First, there is an upfront cost to hire experts and upgrade equipment. The ROI can take years. Second, there is limited scope for innovation beyond the template followed during commissioning. Building innovation is stifled by vertically integrated systems and an inability to easily deploy third-party applications. One of the primary reasons for the explosive growth in the computing industry is a standard interface and ease of application installation. An analogous system for buildings will create new opportunities to save energy. The innovation opportunities with a standardized building information system is highlighted with three use cases below. It is easy to create such a system with current technologies; the figure below shows a high-level architecture.

Building information system architecture

Occupancy-based control

The idea is simple: if we shut off systems that aren’t required when people aren’t present, we save energy. However, detecting occupancy reliably in a privacy-preserving manner is challenging, and most buildings today keep the lights (and HVAC) on even when no one is present. A paper published in SenSys (coauthored by Bharathan) showed that it is possible to infer occupancy using WiFi data, building floor plans, and personnel office room assignments. Among the study participants, peak building occupancy was just 60% (see figure below), and occupancy-based control saved 18% of HVAC electricity use by controlling one-quarter of the building area. The proposed solution simply leverages existing building infrastructure and is inexpensive to deploy. This type of solution is possible only because the information across different systems is exchanged freely.

Building Occupancy Trends

Fault detection

Fixing faults is core to building maintenance, but it is challenging to identify energy-wasting faults as they are difficult to notice, unlike a leak or an uncomfortable temperature. Typical building-fault detection relies on protocols established by experts, but these rules do not provide sufficient prioritization information, nor how much energy they waste.

Sophisticated fault detection algorithms have been published in literature, yet these are not deployed in practice because of vendor- locked systems. Using one year of building data, researchers (Bharathan was a coauthor) developed a simple machine learning algorithm that looks for rooms that do not follow typical temperature patterns. The algorithm identified 88 faults within the building’s HVAC system after an expert fixed all the faults found during an inspection. Many of these faults had existed for years, and resulted in estimated 410.3MWh/year savings. Again, the key component to this solution: easy access to building data.

Software thermostat

The thermostat is the only interface between building occupants and the energy-intensive HVAC system. And yet, in most buildings, occupants don’t know where the thermostat is or how to use it. The HVAC system’s primary function is to keep occupants comfortable so that they can be productive. But without thermostat feedback, occupants can end up being uncomfortable and waste energy.

With the building information system, researchers (Bharathan and collaborators) built a software version of the thermostat to address these concerns (screenshot below). The application was an instant hit and remains popular eight years after its launch. The resulting user study published in Ubicomp showed that users were frustrated with the old thermostat. In fact, one user actually taped a manila envelope on the vent to stop cold air from blowing. The software thermostat helped users precisely control their environment and send complaints if needed. The HVAC maintenance personnel were worried that the interface would lead to a flood of complaints that they weren’t staffed to handle. Usage data showed that most users were happy to use the application without giving any feedback. The few complaints received led to identification of major faults, such as a thermostat being blocked by a computer.

Software thermostat

The three use cases above didn’t require additional sensor installations and simply leveraged existing information. With low-cost solutions, we can attract building owners to adopt solutions that save energy. But we need additional incentives within the building industry to create these low-cost solutions that can have large-scale impact.

These use cases demonstrate that sustainable design doesn’t stop at the brick and mortar of the building. It should carry through to how the energy, emissions, air, water and waste can be managed as systems across buildings. As companies worldwide embark on making their buildings more sustainable, it will be critical to have a data-driven measure of success. The sense and act steps allow each company to look at what is common in the data model today, get started, assess the value, and scale as needed using open-source tools.

Scale

Even when an attractive energy-saving solution is available, it is difficult to deploy the solution at scale. This is because each building is unique, from its infrastructure and how it is used, to the software used to manage daily operations, and how it changes over time. While the fundamental components of a building remain the same (e.g., rooms, smoke sensors, ventilation fans), each vendor treats them differently. When we try to deploy a solution to a building, the discrepancies between vendor representations become difficult to resolve automatically.

In the computing industry, on other hand, it is easy for us to install an application without worrying about the manufacturer or provider because of the use of specifications (e.g., standard protocols for WiFi) and programming interfaces (e.g., Android OS for the phone). Researchers (including Bharathan) created such a standard interface for buildings with the Brick schema, where the building components and their connections to each other are represented through a knowledge graph. The figure below shows a Brick representation of a toy building with two rooms and a few sensors. Brick is now an industry consortium with growing demand, and is in the process of being integrated into building standards.

Given a standard representation such as Brick, we still have the task of representing the existing building in this new format, which can take manual effort and be slow to deploy. Using machine-learning techniques in natural language processing, we can automate this translation and minimize manual effort. The algorithm’s performance improves as more buildings are mapped to Brick and it learns from representation patterns across buildings.

The Brick schema

With the sense, act and scale framework, we envision a day when it will be as easy to configure a building as it is our phones today. We can improve the information available to building managers by using low-cost sensors, use the available information to develop innovations that save energy, and deploy the solution to many buildings with use of a knowledge graph.

Getting started

We are seeing early success in using the sense, act, scale approach in our AWS Sustainability Services practice to optimize how buildings report their sustainability data through the cloud.  It solves several problems by providing a simple framework to plan how our top-level sustainability strategy can be supported by specific building-optimization steps, underpinned by a semi-standardized data model.

The lack of standardization across building management systems has resulted in difficulties in accessing the data. Now that those data acquisition problems are being solved through advances in IoT and API, it opens up new opportunities to expose, analyze and report data that was previously difficult or costly to acquire.  With new advances like the Brick schema, we are making advances in how we can manage building assets at scale, just like servers, laptops and phones.

We are starting to see the potential to move the world from a building management systems approach; one building, one manager to a building systems management approach; many buildings, one manager. Energy efficiency gains of 30% or more are more feasible when we automate energy-control policies across all buildings at the push of a button.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.