AmazonScience_LeadImage_JointAssortment_01.jpg
"Joint Assortment and Inventory Planning for Heavy Tailed Demand" was authored by, top row, Omar El Housni, visiting assistant professor at Cornell Tech, and Omar Mouchtaki, a PhD student at Columbia Business School; second row, Guillermo Gallego, professor of engineering at The Hong Kong University of Science and Technology, and Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; third row, Salal Humair, Amazon senior principal research scientist, and Sangjo Kim, assistant professor at Shanghai University of Finance and Economics; and bottom row, Ali Sadighian, Amazon senior science manager, and Jingchen Wu, a senior research scientist.

Developing a model to offer fashion products that cater to diverse tastes

Scientists are working to address assortment optimization and inventory planning challenges for fashion products.

One ongoing challenge faced by online retailers is how to optimally select the subset of fashion products to offer and how much inventory to procure before the start of the selling season. Deciding which subset of products to offer from a larger catalog of products is known as the assortment optimization problem. Assortment optimization and inventory planning for fashion products is made complex not only because of the need to forecast demand months in advance for new products, but also because customers may choose to substitute between different products if their first choice is not available. In the online world, an additional complexity is that customers interact with the website in a very different way than the way they purchase in brick-and-mortar stores.

“Addressing assortment and inventory planning together is a hard problem around which we have limited published literature, and limited applied solutions in industry,” says Salal Humair, a senior principal scientist in Amazon’s Supply Chain Optimization Technologies (SCOT) organization.

Now, thanks to ideas sparked in part by a former Amazon intern, a team of scientists at Amazon and Columbia University have taken significant steps toward developing a practical solution for this highly complex problem.

“We wanted to develop a scientific way to solve this very hard problem which is implementable and scalable in practice,” says Humair, who is responsible for developing optimization models for Amazon’s supply chain planning decisions.

The result is a paper that published in May 2021 which Humair co-authored with other Amazon scientists and university collaborators: “Joint Assortment and Inventory Planning for Heavy Tailed Demand”.

In the paper, the authors describe an approach that “balances expected revenue and inventory costs by identifying a subset of products that can pool demand from the universe of products, without excessively cannibalizing revenue due to the substitution behavior of customers.” The authors “also present a multi-step choice model that captures the complex choice process in an online retail setting, usually characterized by a large universe of products and a heavy-tailed distribution of mean demands.”

The project originated after Omar El Housni, then a graduate student at Columbia University, had completed two internships in SCOT. Inspired by his experience, he and Vineet Goyal, a professor in the Industrial Engineering and Operations Research Department at Columbia, developed a research proposal with their Amazon partners to address assortment and inventory planning together. Goyal, who is also an Amazon Scholar, focuses his research on sequential decision problems under uncertainty.

Salal Humair, senior principal research scientist; Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; and Ali Sadighian, senior science manager, explain how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process.

Ali Sadighian, a senior science manager at SCOT who had been El Housni’s manager during his internship, worked on the proposal with Goyal, El Housni and Humair. Goyal then applied for and received a 2018 Amazon Research Award, which helped fund another of Vineet’s students, Omar Mouchtaki, to work on the paper. Mouchtaki also interned at Amazon.

“If the internships hadn't happened, we would not have explored this problem,” says Goyal. Sadighian notes that Amazon science interns are exposed to a wealth of problems that they often continue to think about even after the end of the experience, which was the case with El Housni. “When you expose the right person to the right domain, you get these great collaborations,” says Sadighian.

Although the research in the paper did not rely on Amazon data, its conclusions are relevant to the company’s operations.

“We wanted to create an approximation of reality that is useful for Amazon too,” says Sadighian. “So, it doesn't need to be based on Amazon data, but it needs to somewhat reflect reality, and how you present a plausible approximation of reality as it pertains to Amazon is a tough problem.”

Amazon Science asked Sadighian, Goyal, and Salal three questions about how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process and informs inventory planning for products that can be easily substituted for one another.

Q. Why is it particularly challenging to predict the demand for substitutable products and how does Amazon’s scale add to the complexity of this problem?

Goyal: When you have substitutable products, especially at the scale of Amazon, the demand of each individual product actually depends on what else you are offering. The demand depends on what selection you carry and the number of selection possibilities is enormous at Amazon scale. So that is the underlying complexity in modeling demand for substitutable products.

There is another complexity addressed in this paper. Even if the demand model is known, planning for the inventory is still a complicated problem because of the substitution happening in a dynamic manner.

Let's say we offer three types of chocolate with different cocoa percentages: 90%, 80%, and 70%. The customers all prefer 90% the most, but will substitute to chocolates with lower percentages of cocoa if 90% is not available. We start with enough inventory for all of them. In the beginning, only 90% chocolate will sell. Once it runs out, 80% sells and then 70%. So, the demand of each product will depend on what other products still exist in the selection and this is a dynamic process.

Sadighian: It is not easy to develop a tractable model for the behavior of customers who, in the presence of a product, have one behavior, and in the absence of that product, have other behaviors. Now, consider that sometimes the same product might have different functions for different customers, and thence customers might go in different directions to substitute them.

Humair: If you have three products and their demand is independent, you forecast every one of them and the sum of their demands will be the sum of the individual forecasts. But, in this case, what's happening is that if I have two products, and I'm adding a third, depending on which third I add, the forecast for all three will change. I can create a number of potential subsets and every subset will have a different forecast for each one of the items depending on which other items are put in that subset. That leads to an exponential number of possibilities for forecasts. It depends on the subset of the catalog and number of subsets is astronomically large.

Q. How are you able to capture within this model the complex choice process of the customer in an online retail setting?

Humair: The process by which customers make choices on the Amazon Store is extremely complex. Describing that process in mathematical form is one problem. Now the second problem is, if that process is so complicated, we don't want the assortment and inventory optimization model to be so tied into that complexity. One of the clever approaches we took is that we put an abstraction layer between the customer choice process and the problem of what subset and how much to buy. And the way we do that is building on something that Vineet has really pioneered in his research. It's called a Markov chain choice model.

Goyal: This Markov chain choice model is defined by a substitution matrix: What is the probability of substituting to another product if your first choice is not available? So, although the choice process itself is complex, we abstracted away the complexity using this substitution matrix. And therefore, we're able to design an algorithm that does not really change with the complexities of the choice process. Tomorrow, we may introduce another novelty in the model that captures reality better in the choice process, but we still would be able to use the same algorithm, because there's this abstraction layer that allows us to go from any model on the customer choice side to the optimization algorithm on the assortment and inventory side.

Sadighian: The way I think about it is that, whenever you make a product-purchase decision, you have a large number of signals thrown at you. But we should realize that if we focus on a few crucial pieces of information, the other details become less relevant. To take the chocolate example: the color, the shape, all of those may be important. But at the end of the day, just tell me (Ali) the cocoa percentage and maybe that's the most important thing for me. The beauty of an abstraction is that it tells you: “Relax, you don't need to throw in everything and the kitchen sink to make a decision. You only need to know a few pieces of (potentially synthesized) crucial information.”

Q. What is unique about this model and what are the limitations of previous models that this work overcomes?

Goyal: Prior work in this area relied on the structural form of the choice process. So, the assortment optimization algorithms used the properties of the choice process. And if the modeling of that choice process changes slightly, that optimization algorithm doesn't remain usable. So, abstracting it away gives us this significant benefit, and I think is one thing unique to this work.

Humair: What we have done is taken the first step towards solving a more complicated version of the assortment and inventory optimization problem, which is a sequential decision-making problem. You solve the same problem as we are doing in this paper, but you do it with only a limited amount of information, i.e., the catalog of the current vendor. And then you go to the next vendor and decide the additional assortment. What is very promising about this work is that it gives you the stepping stone to actually solving real and practical problems, in a manner that each step forward can build on the past work rather than having to throw it away.

Sadighian: This is the very first step, but maybe one of the most concrete first steps toward solving practical assortment and inventory problems. These first steps either put you on the right path, which we hope is the case, or they send you into the weeds. There is a tremendous amount of work left to be done. But the fact that it shows you the light at the end of the tunnel is maybe the biggest piece of the puzzle for me coming out of this.

I’d like to highlight the genesis of this work. It all started with Omar El Housni interning with us while he was Vineet’s student. Another student of Vineet, Omar Mouchtaki, who interned with us this year is also working on this problem. These relationships demonstrate that if you pick a rich area, there are many avenues to be explored. Omar El Housni is now a professor at Cornell Tech and I suspect he will continue to work on this area. Even if there are bits and pieces that we cannot talk about because they are Amazon internal research, the external evidence of our work (this paper) is out there and our colleagues are continuing to work on it. There is so much left to be done that, that I don't see how we can afford not to continue working on it.

We study a joint assortment and inventory optimization problem faced by an online retailer who needs to decide on both the assortment along with the inventories of a set of N substitutable products before the start of the selling season to maximize the expected profit. The problem raises both algorithmic and modeling challenges. One of the main challenges is to tractably model dynamic stock-out based substitution

Related content

IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist, you will solve large complex real-world problems at scale, draw inspiration from the latest science and technology to empower undefined/untapped business use cases, delve into customer requirements, collaborate with tech and product teams on design, and create production-ready models that span various domains, including Machine Learning (ML), Artificial Intelligence (AI), Natural Language Processing (NLP), Reinforcement Learning (RL), real-time and distributed systems. As an Applied Scientist on our AI Acceleration Team, you will be at the forefront of transforming how Audible harnesses the power of AI to enhance productivity, unlock new value, and reimagine how we work. In this unique role, you'll apply ML/AI approaches to solve complex real-world problems while helping build the blueprint for how Audible works with AI. ABOUT YOU You are passionate about applying scientific approaches to real business challenges, with deep expertise in Machine Learning, Natural Language Processing, GenAI, and large language models. You thrive in collaborative environments where you can both build solutions and empower others to leverage AI effectively. You have a track record of developing production-ready models that balance scientific excellence with practical implementation. You're excited about not just building AI solutions, but also creating frameworks, evaluation methodologies, and knowledge management systems that elevate how entire organizations work with AI. As an Applied Scientist, you will... - Design and implement innovative AI solutions across our three pillars: driving internal productivity, building the blueprint for how Audible works with AI, and unlocking new value through ML & AI-powered product features - Develop machine learning models, frameworks, and evaluation methodologies that help teams streamline workflows, automate repetitive tasks, and leverage collective knowledge - Enable self-service workflow automation by developing tools that allow non-technical teams to implement their own solutions - Collaborate with product, design and engineering teams to rapidly prototype new product ideas that could unlock new audiences and revenue streams - Build evaluation frameworks to measure AI system quality, effectiveness, and business impact - Mentor and educate colleagues on AI best practices, helping raise the AI fluency across the organization ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
US, WA, Seattle
We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning modeling and architecture expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities * See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques * Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale * Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems * Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. * Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. We drive cross-domain and cross-system improvements through: * invent and deliver price optimization, simulation, and competitiveness tools for Amazon merchants. * shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. * Error detection and price quality guardrails at scale. * Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into Stores architectures, and is highly relevant to the customer; this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication.
IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Key job responsibilities - Work backwards from customer problems to research and develop novel machine learning solutions for music and podcast recommendations. Through A/B testing and online experiments done hand-in-hand with engineering teams, you'll implement and validate your ideas and solutions. - Advocate solutions and communicate results, insights and recommendations to stakeholders and partners. - Produce innovative research on recommender systems that shapes the field and meets the high standards of peer-reviewed publications. You'll cement your team's reputation as thought leaders pioneering new recommenders. Stay current with advancements in the field, adapting latest in literature to build efficient and scalable models A day in the life Lead innovation in AI/ML to shape Amazon Music experiences for millions. Develop state of the art models leveraging and advancing the latest developments in machine learning and genAI. Collaborate with talented engineers and scientists to guide research and build scalable models across our audio portfolio - music, podcasts, live streaming, and more. Drive experiments and rapid prototyping, leveraging Amazon's data at scale. Innovate daily alongside world-class teams to delight customers worldwide through personalization. About the team The team is responsible for models that underly Amazon Music’s recommendations content types (music, podcasts, audiobooks), sequencing models for algorithmic stations across mobile, web and Alexa, ranking models for the carousels and Page strategy on Amazon Music surfaces, and Query Understanding for conversational flow and recommendations. You will collaborate with a team of product managers, applied scientists and software engineers delivering meaningful recommendations, personalized for each of the millions of customers using Amazon Music globally. As a scientist on the team, you will be involved in every aspect of the development lifecycle, from idea generation and scientific research to development and deployment of advanced models. You will work closely with engineering to realize your scientific vision.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
SE, Stockholm
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. The Prime Video Sye Protocol team is looking for an Applied Scientist. This person will deliver features that automatically detect and prevent video quality issues before they reach millions of customers worldwide. You will lead the design of models that scale to very large quantities of video data across multiple dimensions. You will embody scientific rigor, designing and executing experiments to demonstrate the technical effectiveness and business value of your methods. You will work alongside engineering teams to deliver your research into production systems that ensure premium streaming experiences for customers globally. You will have demonstrated technical, teamwork and communication skills, and a motivation to deliver customer value from your research. Our team offers exceptional opportunities for you to grow your technical and non-technical skills and make a global impact. Key job responsibilities - Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement to solve complex video defect detection challenges. - Collaborate with software engineers to integrate successful experimental results into Prime Video wide processes and production systems that operate at scale with minimal computational overhead. - Communicate results and insights to both technical and non-technical audiences, including presentations and written reports to stakeholders across engineering, operations, and content teams. A day in the life Your typical day starts investigating overnight video quality alerts and developing breakthrough detection algorithms. You'll collaborate with engineering teams on production deployment, analyze video data to uncover quality patterns, and work with transformers and video language models. About the team You'll join a team focused on delivering premium video experiences through scientific innovation. We build machine learning systems that automatically detect video quality issues across our global streaming platform, collaborating closely with engineering, operations, and content teams to solve video analysis challenges while ensuring customers never experience poor quality. Our team partners with leading universities to develop solutions and advance computer vision and machine learning techniques. We value scientific rigor whilst staying customer-focused, encouraging both innovative and practical solutions that scale globally. There are opportunities for high-impact publications and patent development that advance the entire field.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.