AmazonScience_LeadImage_JointAssortment_01.jpg
"Joint Assortment and Inventory Planning for Heavy Tailed Demand" was authored by, top row, Omar El Housni, visiting assistant professor at Cornell Tech, and Omar Mouchtaki, a PhD student at Columbia Business School; second row, Guillermo Gallego, professor of engineering at The Hong Kong University of Science and Technology, and Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; third row, Salal Humair, Amazon senior principal research scientist, and Sangjo Kim, assistant professor at Shanghai University of Finance and Economics; and bottom row, Ali Sadighian, Amazon senior science manager, and Jingchen Wu, a senior research scientist.

Developing a model to offer fashion products that cater to diverse tastes

Scientists are working to address assortment optimization and inventory planning challenges for fashion products.

One ongoing challenge faced by online retailers is how to optimally select the subset of fashion products to offer and how much inventory to procure before the start of the selling season. Deciding which subset of products to offer from a larger catalog of products is known as the assortment optimization problem. Assortment optimization and inventory planning for fashion products is made complex not only because of the need to forecast demand months in advance for new products, but also because customers may choose to substitute between different products if their first choice is not available. In the online world, an additional complexity is that customers interact with the website in a very different way than the way they purchase in brick-and-mortar stores.

“Addressing assortment and inventory planning together is a hard problem around which we have limited published literature, and limited applied solutions in industry,” says Salal Humair, a senior principal scientist in Amazon’s Supply Chain Optimization Technologies (SCOT) organization.

Now, thanks to ideas sparked in part by a former Amazon intern, a team of scientists at Amazon and Columbia University have taken significant steps toward developing a practical solution for this highly complex problem.

“We wanted to develop a scientific way to solve this very hard problem which is implementable and scalable in practice,” says Humair, who is responsible for developing optimization models for Amazon’s supply chain planning decisions.

The result is a paper that published in May 2021 which Humair co-authored with other Amazon scientists and university collaborators: “Joint Assortment and Inventory Planning for Heavy Tailed Demand”.

In the paper, the authors describe an approach that “balances expected revenue and inventory costs by identifying a subset of products that can pool demand from the universe of products, without excessively cannibalizing revenue due to the substitution behavior of customers.” The authors “also present a multi-step choice model that captures the complex choice process in an online retail setting, usually characterized by a large universe of products and a heavy-tailed distribution of mean demands.”

The project originated after Omar El Housni, then a graduate student at Columbia University, had completed two internships in SCOT. Inspired by his experience, he and Vineet Goyal, a professor in the Industrial Engineering and Operations Research Department at Columbia, developed a research proposal with their Amazon partners to address assortment and inventory planning together. Goyal, who is also an Amazon Scholar, focuses his research on sequential decision problems under uncertainty.

Salal Humair, senior principal research scientist; Vineet Goyal, Amazon Scholar and a professor in the Industrial Engineering and Operations Research Department at Columbia; and Ali Sadighian, senior science manager, explain how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process.

Ali Sadighian, a senior science manager at SCOT who had been El Housni’s manager during his internship, worked on the proposal with Goyal, El Housni and Humair. Goyal then applied for and received a 2018 Amazon Research Award, which helped fund another of Vineet’s students, Omar Mouchtaki, to work on the paper. Mouchtaki also interned at Amazon.

“If the internships hadn't happened, we would not have explored this problem,” says Goyal. Sadighian notes that Amazon science interns are exposed to a wealth of problems that they often continue to think about even after the end of the experience, which was the case with El Housni. “When you expose the right person to the right domain, you get these great collaborations,” says Sadighian.

Although the research in the paper did not rely on Amazon data, its conclusions are relevant to the company’s operations.

“We wanted to create an approximation of reality that is useful for Amazon too,” says Sadighian. “So, it doesn't need to be based on Amazon data, but it needs to somewhat reflect reality, and how you present a plausible approximation of reality as it pertains to Amazon is a tough problem.”

Amazon Science asked Sadighian, Goyal, and Salal three questions about how their group came up with a model that successfully captures some of the complexities of the customer’s decision-making process and informs inventory planning for products that can be easily substituted for one another.

Q. Why is it particularly challenging to predict the demand for substitutable products and how does Amazon’s scale add to the complexity of this problem?

Goyal: When you have substitutable products, especially at the scale of Amazon, the demand of each individual product actually depends on what else you are offering. The demand depends on what selection you carry and the number of selection possibilities is enormous at Amazon scale. So that is the underlying complexity in modeling demand for substitutable products.

There is another complexity addressed in this paper. Even if the demand model is known, planning for the inventory is still a complicated problem because of the substitution happening in a dynamic manner.

Let's say we offer three types of chocolate with different cocoa percentages: 90%, 80%, and 70%. The customers all prefer 90% the most, but will substitute to chocolates with lower percentages of cocoa if 90% is not available. We start with enough inventory for all of them. In the beginning, only 90% chocolate will sell. Once it runs out, 80% sells and then 70%. So, the demand of each product will depend on what other products still exist in the selection and this is a dynamic process.

Sadighian: It is not easy to develop a tractable model for the behavior of customers who, in the presence of a product, have one behavior, and in the absence of that product, have other behaviors. Now, consider that sometimes the same product might have different functions for different customers, and thence customers might go in different directions to substitute them.

Humair: If you have three products and their demand is independent, you forecast every one of them and the sum of their demands will be the sum of the individual forecasts. But, in this case, what's happening is that if I have two products, and I'm adding a third, depending on which third I add, the forecast for all three will change. I can create a number of potential subsets and every subset will have a different forecast for each one of the items depending on which other items are put in that subset. That leads to an exponential number of possibilities for forecasts. It depends on the subset of the catalog and number of subsets is astronomically large.

Q. How are you able to capture within this model the complex choice process of the customer in an online retail setting?

Humair: The process by which customers make choices on the Amazon Store is extremely complex. Describing that process in mathematical form is one problem. Now the second problem is, if that process is so complicated, we don't want the assortment and inventory optimization model to be so tied into that complexity. One of the clever approaches we took is that we put an abstraction layer between the customer choice process and the problem of what subset and how much to buy. And the way we do that is building on something that Vineet has really pioneered in his research. It's called a Markov chain choice model.

Goyal: This Markov chain choice model is defined by a substitution matrix: What is the probability of substituting to another product if your first choice is not available? So, although the choice process itself is complex, we abstracted away the complexity using this substitution matrix. And therefore, we're able to design an algorithm that does not really change with the complexities of the choice process. Tomorrow, we may introduce another novelty in the model that captures reality better in the choice process, but we still would be able to use the same algorithm, because there's this abstraction layer that allows us to go from any model on the customer choice side to the optimization algorithm on the assortment and inventory side.

Sadighian: The way I think about it is that, whenever you make a product-purchase decision, you have a large number of signals thrown at you. But we should realize that if we focus on a few crucial pieces of information, the other details become less relevant. To take the chocolate example: the color, the shape, all of those may be important. But at the end of the day, just tell me (Ali) the cocoa percentage and maybe that's the most important thing for me. The beauty of an abstraction is that it tells you: “Relax, you don't need to throw in everything and the kitchen sink to make a decision. You only need to know a few pieces of (potentially synthesized) crucial information.”

Q. What is unique about this model and what are the limitations of previous models that this work overcomes?

Goyal: Prior work in this area relied on the structural form of the choice process. So, the assortment optimization algorithms used the properties of the choice process. And if the modeling of that choice process changes slightly, that optimization algorithm doesn't remain usable. So, abstracting it away gives us this significant benefit, and I think is one thing unique to this work.

Humair: What we have done is taken the first step towards solving a more complicated version of the assortment and inventory optimization problem, which is a sequential decision-making problem. You solve the same problem as we are doing in this paper, but you do it with only a limited amount of information, i.e., the catalog of the current vendor. And then you go to the next vendor and decide the additional assortment. What is very promising about this work is that it gives you the stepping stone to actually solving real and practical problems, in a manner that each step forward can build on the past work rather than having to throw it away.

Sadighian: This is the very first step, but maybe one of the most concrete first steps toward solving practical assortment and inventory problems. These first steps either put you on the right path, which we hope is the case, or they send you into the weeds. There is a tremendous amount of work left to be done. But the fact that it shows you the light at the end of the tunnel is maybe the biggest piece of the puzzle for me coming out of this.

I’d like to highlight the genesis of this work. It all started with Omar El Housni interning with us while he was Vineet’s student. Another student of Vineet, Omar Mouchtaki, who interned with us this year is also working on this problem. These relationships demonstrate that if you pick a rich area, there are many avenues to be explored. Omar El Housni is now a professor at Cornell Tech and I suspect he will continue to work on this area. Even if there are bits and pieces that we cannot talk about because they are Amazon internal research, the external evidence of our work (this paper) is out there and our colleagues are continuing to work on it. There is so much left to be done that, that I don't see how we can afford not to continue working on it.

We study a joint assortment and inventory optimization problem faced by an online retailer who needs to decide on both the assortment along with the inventories of a set of N substitutable products before the start of the selling season to maximize the expected profit. The problem raises both algorithmic and modeling challenges. One of the main challenges is to tractably model dynamic stock-out based substitution

Related content

US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
ES, Barcelona
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Science Manager to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will lead a strong science team and work closely with other science and engineering leaders, product and business partners together to build the best personalized customer experience for Prime Video. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Lead to develop AI solutions for various Prime Video recommendation and personalization systems using Deep learning, GenAI, Reinforcement Learning, recommendation system and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Hire and grow a science team working in this exciting video personalization domain. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.