A blue plaque at Kings College in Cambridge commemorating former student and computer pioneer Alan Turing
A blue plaque at Kings College in Cambridge, UK, commemorating former student and computer pioneer Alan Turing.
chrisdorney/Getty Images

Does the Turing Test pass the test of time?

Four Amazon scientists weigh in on whether the famed mathematician's definition of artificial intelligence is still applicable, and what might surprise him most today.

On Oct. 1, 1950, the journal Mind featured a 27-page entry authored by Alan Turing. More than 70 years later, that paper — "Computing Machinery and Intelligence" — which posed the question, “Can machines think?” remains foundational in artificial intelligence.

However, while the paper is iconic, the original goal of building a system comparable to human intelligence has proved elusive. In fact, Alexa VP and Head Scientist Rohit Prasad has written, “I believe the goal put forth by Turing is not a useful one for AI scientists like myself to work toward. The Turing Test is fraught with limitations, some of which Turing himself debated in his seminal paper.”

Clockwise from top left: Yoelle Maarek, vice president of research and science for Alexa Shopping; Alex Smola, AWS vice president and distinguished scientist; Gaurav Sukhatme, the USC Fletcher Jones Foundation Endowed Chair in Computer Science and Computer Engineering and an Amazon Scholar; Nikko Strom, Alexa AI vice president and distinguished scientist.
Clockwise from top left: Yoelle Maarek, vice president of research and science for Alexa Shopping; Alex Smola, AWS vice president and distinguished scientist; Gaurav Sukhatme, the USC Fletcher Jones Foundation Endowed Chair in Computer Science and Computer Engineering and an Amazon Scholar; Nikko Ström, Alexa AI vice president and distinguished scientist.

In light of the 2021 AAAI Conference on Artificial Intelligence, we asked scientists and scholars at Amazon how they view that paper today. We spoke with Yoelle Maarek, vice president of research and science for Alexa Shopping; Alex Smola, AWS vice president and distinguished scientist; Nikko Ström, Alexa AI vice president and distinguished scientist; and Gaurav Sukhatme, the USC Fletcher Jones Foundation Endowed Chair in Computer Science and Computer Engineering and an Amazon Scholar.

We asked them whether Turing’s definition of artificial intelligence still applies, what they think Turing would be surprised by in 2020, and which of today’s problems researchers will still be puzzling over 70 years from now.

Q. Does Turing’s definition of AI (essentially “a test of a machine's ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human”) still apply, or does it need to be updated?

Smola: “The core of the question remains as relevant as it was 70 years ago. That said, I would argue that rather than seeking binary (yes/no) tests for AI we should have something more gradual. For instance, the argument could be about how long a machine can fool a human. Alexa and others by now do a pretty good job for many queries for single turn, and there are even multi-turn systems that are pretty capable. In fact, you can test out some of them as part of the Alexa Prize (‘Alexa, let’s chat’). Using time, you can measure progress more finely, e.g., by the number of minutes (or turns) it takes to uncover the imposter, rather than a fixed time limit.”

Evaluating AI on the basis of being indistinguishable from human intelligence makes as much sense as evaluating airplanes based on being indistinguishable from birds.
Nikko Strom

Maarek: “It is clear it is not a perfect definition. First, I doubt there exists a universally agreed-upon definition of intelligence, and it is not clear what ‘a human’ refers to. Is that any human? Can a machine be indistinguishable from some humans and not from others? It is, however, a simplifier that can still be used for inspiration. And it does bring inspiration, see for instance the outstanding progress in chess or Go. There are, of course, so many other areas where machines still require learning, and these challenges keep inspiring scientists. Two such areas, among others, on which we are focusing in Alexa Shopping Research are to make advancements in conversational shopping (as a subfield of conversational AI) and computational humor. With even small progress in these hard AI challenges, I am sure we will bring tremendous value to our customers and even make them smile.”

Ström: “Evaluating AI on the basis of being indistinguishable from human intelligence makes as much sense as evaluating airplanes based on being indistinguishable from birds. We may never have a single definition, but a common thread is generalizability, i.e., the ability to be successful in novel situations, not considered during the design of the system. To achieve such generalization, an AI needs the ability to reason and plan, have a representation of world-knowledge, an ability to learn and remember, and an ability to regulate and integrate those cognitive capabilities toward goals.

"The AI also needs to be an active participant in the world, and when evaluating intelligence, one needs to consider not just whether goals are met, but how efficiently goals are reached based on efficacy metrics that depend on the application — e.g., cost, energy use, speed, et cetera. My prediction is that once one or several successful such systems exist, a standard model will emerge that becomes a de facto definition of AI.”

Sukhatme: “I think the idea that we want a machine to have the ‘ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human’ still applies when thinking about AI. However, this idea has over the years been interpreted very narrowly when it comes to the ‘test’ – i.e. people look for human-like performance on some narrow task. I think we need to remind people that intelligence is very broad set of capabilities and we need to acknowledge that humans have deep understanding of the world, are social, have empathy, can and do learn continually and can do a very broad range of things. If we are to say that we’ve built a machine or system that exhibits AI, I would want to see it exhibit behavior indistinguishable from humans on a similar breadth of abilities.”

Q. In terms of AI, what do you think would surprise Turing today?

I think he'd be surprised at how far we’ve come in terms of the technological artifacts we’ve produced. And he’d be disappointed in how un-intelligent they are
Gaurav Sukhatme

Sukhatme: “I think he’d be surprised at how far we’ve come in terms of the technological artifacts we’ve produced. And he’d be disappointed in how un-intelligent they are.”

Maarek: “Hard to answer, as this is pure speculation. But I would like to believe that computational humor would be one of them, simply because it makes us all smile.”

Ström: “The resolution of Moravec's paradox. Machine learning and, in particular, deep learning, is now enabling us to solve sensorimotor tasks in robotics, and sensory tasks such as object recognition and speech recognition. Yet general intelligence is still a hard, largely unsolved, problem. I also think Turing would be fascinated by quantum computers.”

Smola: “The thing that would surprise Turing the most is probably the amount of data and its ready availability. The fact that we can build language models on more than 1 trillion characters of text, or that we have hundreds of millions of images available, is probably the biggest differentiator. It’s only thanks to these mountains of data that we’ve been able to build systems that generate speech (e.g. Amazon Polly), that translate text (e.g. Amazon Translate), that recognize speech (e.g. Transcribe), that recognize images, faces in images, or that are able to analyze poses in video.

"At the same time, it’s unclear whether he would have anticipated the exponential growth in computation. The UNIVAC was capable of performing around 4,000 floating point operators (FLOPS) per second. Our latest P4 servers can carry out around 1-2 PetaFLOPS, so that’s 1,000,000,000,000,000 multiply-adds — and you can rent them for around $30 an hour.”

Q. Which of today’s theoretical questions will scientists still be puzzling about in 2090?

Sukhatme: “How do human brains do what they do in such an energy efficient manner? What is consciousness?”

Maarek: “In terms of theoretical computer science problems, I believe that hard AI problems like Winograd Schema Challenge, will be resolved. But I want to believe that other AI challenges, like giving a true sense of humor to machines, won’t be solved yet. It's humbling to think that in 1534 the French writer François Rabelais said, 'le rire est le propre de l’homme' — which can be translated as 'the laugh is unique to humans'. It’s probably why my team is researching computational humor — it’s fun and hard.”

Ström: “In 70 years, I predict that AI has been solved for practical purposes and is used for cognitive tasks, small and large. So that is not it. Some long-standing profound questions like NP=P will still be unsolved. The physics model of time, space, energy and matter will still not be complete, and the question about how life spontaneously emerges from lifeless building-blocks will still puzzle both human and synthetic scientists. Unless we get lucky, 70 years will also not be enough to determine if there is alien intelligent life in our galaxy.”

In the foreground, a welcome to Bletchley Park offers a guide, in the background a group of tourists get a guided tour. This area was used in World War 2 to break the German Enigma Codes.
A group of tourists get a guided tour of the grounds of Bletchley Park. This area was used in World War 2 to break the German Enigma Codes.
NeonJellyfish/Getty Images

Smola: “That’s really difficult since most projections don’t hold up well, even for a decade or so. In 2016, when I interviewed for a job and was deciding between Amazon and another major company, I was told at that other company that I was making a mistake in betting on AI in the cloud. Problems that will keep us awake, probably forever, are how to appropriately balance innovation while also protecting individual liberties. Those challenges will require continuous and careful consideration by multiple stakeholders in academia, industry, government, and our society. Likewise, we will never be able to have a full characterization of the empirical power of our statistical tools. In simple terms, we’ll likely always encounter algorithms that work way better than they should in theory. Lastly, there’s the issue of actually gaining causal understanding from data as to how the world works. This is hard and has been vexing (natural) scientists for centuries.

"Areas where we will likely see a lot of progress include autonomous systems. There’s so much economic promise in self-driving vehicles that I think we will eventually deliver something that works. The algorithms used for cars can also be adapted for a wide variety of other problems such as manufacturing, maintenance, et cetera. The next decade or two will be amazing — and we’ll likely also see great progress on the Turing test itself.”

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.. Come join the team that owns the technology behind AWS People Planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners. A Sr. Data Scientist in the AWS Workforce Planning team, will partner with Software Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
PL, Warsaw
Come build the future of smart security with us. Are you interested in helping shape the future of devices and services designed to keep people close to what’s important? The Senior Data Scientist within Ring Data Science and Engineering plays a pivotal role in better understanding how customers interact with our products and how we can improve their experience. This role will build scalable solutions and models to support our business functions (Subscriptions, Product, Customer Service). By leveraging a range of methods with an emphasis on causal techniques, you will explain, quantify, predict and prescribe in support of informing critical business decisions. You will help the organization better understand customers and how to best impact them. You will seek to create value for both stakeholders and customers and inform findings in a clear, actionable way to managers and senior leaders. Key job responsibilities - Lead development and validation of state-of-the-art technical designs (causal inference, predictive tabular models, data insights/visualizations from EDA, etc) - Drive shared understanding among business, engineering, and science teams of domain knowledge of processes, system structures, and business requirements. - Apply domain knowledge to identify product roadmap, growth, engagement, and retention opportunities; quantify impact; and inform prioritization. - Advocate technical solutions to business stakeholders, engineering teams, and executive level decision makers. - Contribute to the hiring and development of others - Communicate strategy, progress, and impact to senior leadership A day in the life Translate/Interpret - Complex and interrelated datasets describing customer behavior, messaging, content, product design and financial impact. Measure/Quantify/Expand - Apply statistical or machine learning knowledge to specific business problems and data. - Analyze historical data to identify trends and support decision making. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Provide requirements to develop analytic capabilities, platforms, and pipelines. Explore/Enlighten - Make decisions and recommendations. - Build decision-making models and propose solution for the business problem you defined. Help productionalize them so they can be used systemically. - Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. - Utilize code (Python/R/SQL) for data analyzing and modeling algorithms. About the team We started in a garage in 2012 when our founder asked a simple question: what if you could answer the front door from your phone? What if you could be there without needing to actually, you know, be there? After many late nights and endless tinkering, our first Video Doorbell was born. That invention has grown into over a decade of groundbreaking products and next-level features. And at the core of all that, everything we’ve done and everything we’ve yet to build, is that same inventor's spirit and drive to bridge the distance between people and what they care about. Whatever it is, at Ring we’re committed to helping you be there for it. (https://www.ring.com)
US, WA, Bellevue
Why this job is awesome? This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. - Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation