Echo Show 10, Charcoal, UI.jpg
A a team of designers, engineers, software developers, and scientists spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday.

The intersection of design and science

How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

During the prototyping stages of the journey that brought Echo Show 10 to life, the design, engineering, and science teams behind it encountered a surprise: one of their early assumptions was proving to be wrong.

The feature that most distinguishes the current generation from its predecessors is the way the device utilizes motion to automatically face users as they move around a room and interact with Alexa. This allows users to move around in the kitchen while consulting a recipe, or to move freely when engaging in a video call, with the screen staying in view.

Naturally, or so the team thought, users would want the device to remain facing them, matching where they were at all times. “You walk from the sink to the fridge, say, while you're using the device for a recipe, the device moves with you,” David Rowell, principal UX designer said. Because no hardware existed, the team had to create a method of prototyping, so they turned to virtual reality (VR). That approach enabled Echo Show 10 teams to work together to test assumptions — including their assumption about how the screen should behave. In this case, what they experienced in VR made them change course.

Echo Show 10 animation

“We had a paradigm that we thought worked really well, but once we tested it, we quickly discovered that we don't want to be one-to-one accurate,” said David Jara, senior UX motion designer. In fact, he said, the feedback led them to a somewhat unexpected conclusion: the device should actually lag behind the user. “Even though, from a pragmatic standpoint, you would think, ‘Well, this thing is too slow. Why can't it keep up?’, once you experienced it, the slowed down version was so much more pleasant.”

This was just one instance of a class of feedback and assumption-changing research that required a team of designers, engineers, software developers, and scientists to constantly iterate and adapt. Those teams spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday. Amazon Science talked to some of those team members to find out how they collaborated to tackle the challenges of developing a motorized smart display and device that pairs sound localization technology and computer vision models.

From idea to iteration

“The idea came from the product team about ways we could differentiate Echo Show,” Rowell said. “The idea came up about this rotating device, but we didn't really know what we wanted to use it for, which is when design came in and started creating use cases for how we could take advantage of motion.”

The design team envisioned a device that moved with users in a way that was both smooth and provided utility.

Adding motion to Echo Show was a really big undertaking. There were a lot of challenges, including how do we make sure that the experience is natural.
Dinesh Nair, applied science manager

That presented some significant challenges for the scientists involved in the project. “Adding motion to Echo Show was a really big undertaking,” said Dinesh Nair, an applied science manager in Emerging Devices. “There were a lot of challenges, including how do we make sure that the experience is natural, and not perceived as creepy by the user.”

Not only did the team have to account for creating a motion experience that felt natural, they had to do it all on a relatively small device. "Building state-of-the-art computer vision algorithms that were processed locally on the device was the greatest challenge we faced," said Varsha Hedau, applied science manager.

The multi-faceted nature of the project also prompted the teams to test the device in a fairly new way. “When the project came along, we decided that that VR would be a great way to actually demonstrate Echo Show 10, particularly with motion,” Rowell noted. “How could it move with you? How does it frame you? How do we fine tune all the ways we want machine learning to move with the correct person?”

Behind each of those questions lay challenges for the design, science, and engineering teams. To identify and address those challenges, the far-flung teams collaborated regularly, even in the midst of a pandemic. “It was interesting because we’re spread over many different locations in the US,” Rowell said. “We had a lot of video calls and VR meant teams could very quickly iterate. There was a lot of sharing and VR was great for that.”

Clearing the hurdles

One of the first hurdles the teams had to clear was how to accurately and consistently locate a person.

“The way we initially thought about doing this was to use spatial cues from your voice to estimate where you are,” Nair said. “Using the direction given by Echo’s chosen beam, the idea was to move the device to face you, and then computer vision algorithms would kick in.”

The science behind Echo Show 10

A combination of audio and visual signals guide the device’s movement, so the screen is always in view. Learn more about the science that empowers that intelligent motion.

That approach presented dual challenges. Current Echo devices form beams in multiple directions and then choose the best beam for speech recognition. “One of the issues with beam selection is that the accuracy is plus or minus 30 degrees for our traditional Echo devices,” Nair observed. “Another is issues with interference noise and sound reflections, for example if you place the device in a corner or there is noise near the person.” The acoustic reflections were particularly vexing since they interfere with the direct sound from the person speaking, especially when the device is playing music. Traditional sound source localization algorithms are also susceptible to these problems.

The Audio Technology team addressed these challenges to determine the direction of sound by developing a new sound localization algorithm. “By breaking down sound waves into their fundamental components and training a model to detect the direct sound, we can accurately determine the direction that sound is coming from,” said Phil Hilmes, director of audio technology. That, along with other algorithm developments, led the team to deliver a sound direction algorithm that was more robust to reflections and interference from noise or music playback, even when it is louder than the person’s voice.

Rowell said, “When we originally conceived of the device, we envisioned it being placed in open space, like a kitchen island so you could use the device effectively from multiple rooms.” Customer feedback during beta testing showed this assumption ran into literal walls. “We found that people actually put the device closer to walls so the device had to work well in these positions.” In some of these more challenging positions, using only audio to find the direction is still insufficient for accurate localization and extra clues from other sensors are needed.

Echo Show 10, Charcoal, Living room.jpg
Echo Show 10 designers initially thought it would be placed in open space, like a kitchen island. Feedback during beta testing showed customers placed it closer to walls, so the teams adjusted.

The design team worked with the science teams so the device relied not just on sound, but also on computer vision. Computer vision algorithms allow the device to locate humans within its field of view, helping it improve accuracy and distinguish people from sounds reflecting off walls, or coming from other sources. The teams also developed fusion algorithms for combining computer vision and sound direction into a model that optimized the final movement.

That collaboration enabled the design team to work with the device engineers to limit the device’s rotation. “That approach prevented the device from turning and basically looking away from you or looking at the wall or never looking at you straight on,” Rowell said. “It really tuned in the algorithms and got better at working out where you were.”

The teams undertook a thorough review of every assumption made in the design phase and adapted based on actual customer interactions. That included the realization that the device’s tracking speed didn’t need to be slow so much as it needed to be intelligent.

“The biggest challenge with Echo Show 10 was to make motion work intelligently,” said Meeta Mishra, principal technical program manager for Echo Devices. “The science behind the device movement is based on fusion of various inputs like sound source, user presence, device placement, and lighting conditions, to name a few. The internal dog-fooding, coupled with the work from home situation, brought forward the real user environment for our testing and iterations. This gave us wider exposure of varied home conditions needed to formulate the right user experience that will work in typical households and also strengthened our science models to make this device a delight.”

Frame rates and bounding boxes

Responding to the user feedback about the preference for intelligent motion meant the science and design teams also had to navigate issues around detection. “Video calls often run at 24 frames a second,” Nair observed. “But a deep learning network that accurately detects where you are, those don't run as fast, they’re typically running at 10 frames per second on the device.”

That latency meant several teams had to find a way to bridge the difference between the frame rates. “We had to work with not just the design team, but also the team that worked on the framing software,” Nair said. “We had to figure out how we could give intermediate results between detections by tracking the person.”

By breaking down sound waves into their fundamental components and training a model ... we can accurately determine the direction that sound is coming from.
Phil Hilmes, director of audio technology

Hedau and her team helped deliver the answer in the form of bounding boxes and Kalman filtering, an algorithm that provides estimates of some unknown variables given the measurements observed over time. That approach allows the device to, essentially, make informed guesses about a user’s movement.

During testing, the teams also discovered that the device would need to account for the manner in which a person interacted with it. “We found that when people are on a call, there are two use cases,” Rowell observed. “They're either are very engaged with the call, where they’re close to the device and looking at the device and the other person on the other end, or they're multitasking.”

The solution was born, yet again, from collaboration. “We went through a lot of experiments to model which user experience really works the best,” Hedau said. Those experiments resulted in utilizing the device’s CV to determine the distance between a person and Echo Show 10.

“We have settings based on the distance that the customer is from the device, which is a way to roughly measure how engaged a customer is,” Rowell said. “When a person is really up close, we don't want the device to move too much because the screen just feels like it's fidgety. But if somebody is on a call and multitasking, they're moving a lot. In this instance, we want smoother transitions.”

Looking to the future

The teams behind the Echo Show 10 are, unsurprisingly, already pondering what’s next. Rowell suggested that, in the future, the Echo Show might show a bit of personality. "We can make the device more playful," Rowell said. "We could start to express a lot of personality with the hardware." [Editor’s note: Some of this is currently enabled via APIs; certain games can “take on new personality through the ability to make the device shake in concert with sound effects and on-screen animations.”]

Nair said his team will also focus on making the on-device processing even faster. “A significant portion of the overall on-device processing is CV and deep learning,” he noted. “Deep networks are always evolving, and we will keep pushing that frontier.”

“Our teams are working continuously to further push the performance of our deep learning models in corner cases such a multi-people, low lighting, fast motions, and more,” added Hedau.

Whatever route Echo Show goes next, the teams behind it already know one thing for certain: they can collaborate their way through just about anything. “With Echo Show 10, there were a lot of assumptions we had when we started, but we didn’t know which would prove true until we got there,” Jara said. “We were kind of building the plane as we were flying it.”

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team