Echo Show 10, Charcoal, UI.jpg
A a team of designers, engineers, software developers, and scientists spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday.

The intersection of design and science

How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

During the prototyping stages of the journey that brought Echo Show 10 to life, the design, engineering, and science teams behind it encountered a surprise: one of their early assumptions was proving to be wrong.

The feature that most distinguishes the current generation from its predecessors is the way the device utilizes motion to automatically face users as they move around a room and interact with Alexa. This allows users to move around in the kitchen while consulting a recipe, or to move freely when engaging in a video call, with the screen staying in view.

Naturally, or so the team thought, users would want the device to remain facing them, matching where they were at all times. “You walk from the sink to the fridge, say, while you're using the device for a recipe, the device moves with you,” David Rowell, principal UX designer said. Because no hardware existed, the team had to create a method of prototyping, so they turned to virtual reality (VR). That approach enabled Echo Show 10 teams to work together to test assumptions — including their assumption about how the screen should behave. In this case, what they experienced in VR made them change course.

Echo Show 10 animation

“We had a paradigm that we thought worked really well, but once we tested it, we quickly discovered that we don't want to be one-to-one accurate,” said David Jara, senior UX motion designer. In fact, he said, the feedback led them to a somewhat unexpected conclusion: the device should actually lag behind the user. “Even though, from a pragmatic standpoint, you would think, ‘Well, this thing is too slow. Why can't it keep up?’, once you experienced it, the slowed down version was so much more pleasant.”

This was just one instance of a class of feedback and assumption-changing research that required a team of designers, engineers, software developers, and scientists to constantly iterate and adapt. Those teams spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday. Amazon Science talked to some of those team members to find out how they collaborated to tackle the challenges of developing a motorized smart display and device that pairs sound localization technology and computer vision models.

From idea to iteration

“The idea came from the product team about ways we could differentiate Echo Show,” Rowell said. “The idea came up about this rotating device, but we didn't really know what we wanted to use it for, which is when design came in and started creating use cases for how we could take advantage of motion.”

The design team envisioned a device that moved with users in a way that was both smooth and provided utility.

Adding motion to Echo Show was a really big undertaking. There were a lot of challenges, including how do we make sure that the experience is natural.
Dinesh Nair, applied science manager

That presented some significant challenges for the scientists involved in the project. “Adding motion to Echo Show was a really big undertaking,” said Dinesh Nair, an applied science manager in Emerging Devices. “There were a lot of challenges, including how do we make sure that the experience is natural, and not perceived as creepy by the user.”

Not only did the team have to account for creating a motion experience that felt natural, they had to do it all on a relatively small device. "Building state-of-the-art computer vision algorithms that were processed locally on the device was the greatest challenge we faced," said Varsha Hedau, applied science manager.

The multi-faceted nature of the project also prompted the teams to test the device in a fairly new way. “When the project came along, we decided that that VR would be a great way to actually demonstrate Echo Show 10, particularly with motion,” Rowell noted. “How could it move with you? How does it frame you? How do we fine tune all the ways we want machine learning to move with the correct person?”

Behind each of those questions lay challenges for the design, science, and engineering teams. To identify and address those challenges, the far-flung teams collaborated regularly, even in the midst of a pandemic. “It was interesting because we’re spread over many different locations in the US,” Rowell said. “We had a lot of video calls and VR meant teams could very quickly iterate. There was a lot of sharing and VR was great for that.”

Clearing the hurdles

One of the first hurdles the teams had to clear was how to accurately and consistently locate a person.

“The way we initially thought about doing this was to use spatial cues from your voice to estimate where you are,” Nair said. “Using the direction given by Echo’s chosen beam, the idea was to move the device to face you, and then computer vision algorithms would kick in.”

The science behind Echo Show 10

A combination of audio and visual signals guide the device’s movement, so the screen is always in view. Learn more about the science that empowers that intelligent motion.

That approach presented dual challenges. Current Echo devices form beams in multiple directions and then choose the best beam for speech recognition. “One of the issues with beam selection is that the accuracy is plus or minus 30 degrees for our traditional Echo devices,” Nair observed. “Another is issues with interference noise and sound reflections, for example if you place the device in a corner or there is noise near the person.” The acoustic reflections were particularly vexing since they interfere with the direct sound from the person speaking, especially when the device is playing music. Traditional sound source localization algorithms are also susceptible to these problems.

The Audio Technology team addressed these challenges to determine the direction of sound by developing a new sound localization algorithm. “By breaking down sound waves into their fundamental components and training a model to detect the direct sound, we can accurately determine the direction that sound is coming from,” said Phil Hilmes, director of audio technology. That, along with other algorithm developments, led the team to deliver a sound direction algorithm that was more robust to reflections and interference from noise or music playback, even when it is louder than the person’s voice.

Rowell said, “When we originally conceived of the device, we envisioned it being placed in open space, like a kitchen island so you could use the device effectively from multiple rooms.” Customer feedback during beta testing showed this assumption ran into literal walls. “We found that people actually put the device closer to walls so the device had to work well in these positions.” In some of these more challenging positions, using only audio to find the direction is still insufficient for accurate localization and extra clues from other sensors are needed.

Echo Show 10, Charcoal, Living room.jpg
Echo Show 10 designers initially thought it would be placed in open space, like a kitchen island. Feedback during beta testing showed customers placed it closer to walls, so the teams adjusted.

The design team worked with the science teams so the device relied not just on sound, but also on computer vision. Computer vision algorithms allow the device to locate humans within its field of view, helping it improve accuracy and distinguish people from sounds reflecting off walls, or coming from other sources. The teams also developed fusion algorithms for combining computer vision and sound direction into a model that optimized the final movement.

That collaboration enabled the design team to work with the device engineers to limit the device’s rotation. “That approach prevented the device from turning and basically looking away from you or looking at the wall or never looking at you straight on,” Rowell said. “It really tuned in the algorithms and got better at working out where you were.”

The teams undertook a thorough review of every assumption made in the design phase and adapted based on actual customer interactions. That included the realization that the device’s tracking speed didn’t need to be slow so much as it needed to be intelligent.

“The biggest challenge with Echo Show 10 was to make motion work intelligently,” said Meeta Mishra, principal technical program manager for Echo Devices. “The science behind the device movement is based on fusion of various inputs like sound source, user presence, device placement, and lighting conditions, to name a few. The internal dog-fooding, coupled with the work from home situation, brought forward the real user environment for our testing and iterations. This gave us wider exposure of varied home conditions needed to formulate the right user experience that will work in typical households and also strengthened our science models to make this device a delight.”

Frame rates and bounding boxes

Responding to the user feedback about the preference for intelligent motion meant the science and design teams also had to navigate issues around detection. “Video calls often run at 24 frames a second,” Nair observed. “But a deep learning network that accurately detects where you are, those don't run as fast, they’re typically running at 10 frames per second on the device.”

That latency meant several teams had to find a way to bridge the difference between the frame rates. “We had to work with not just the design team, but also the team that worked on the framing software,” Nair said. “We had to figure out how we could give intermediate results between detections by tracking the person.”

By breaking down sound waves into their fundamental components and training a model ... we can accurately determine the direction that sound is coming from.
Phil Hilmes, director of audio technology

Hedau and her team helped deliver the answer in the form of bounding boxes and Kalman filtering, an algorithm that provides estimates of some unknown variables given the measurements observed over time. That approach allows the device to, essentially, make informed guesses about a user’s movement.

During testing, the teams also discovered that the device would need to account for the manner in which a person interacted with it. “We found that when people are on a call, there are two use cases,” Rowell observed. “They're either are very engaged with the call, where they’re close to the device and looking at the device and the other person on the other end, or they're multitasking.”

The solution was born, yet again, from collaboration. “We went through a lot of experiments to model which user experience really works the best,” Hedau said. Those experiments resulted in utilizing the device’s CV to determine the distance between a person and Echo Show 10.

“We have settings based on the distance that the customer is from the device, which is a way to roughly measure how engaged a customer is,” Rowell said. “When a person is really up close, we don't want the device to move too much because the screen just feels like it's fidgety. But if somebody is on a call and multitasking, they're moving a lot. In this instance, we want smoother transitions.”

Looking to the future

The teams behind the Echo Show 10 are, unsurprisingly, already pondering what’s next. Rowell suggested that, in the future, the Echo Show might show a bit of personality. "We can make the device more playful," Rowell said. "We could start to express a lot of personality with the hardware." [Editor’s note: Some of this is currently enabled via APIs; certain games can “take on new personality through the ability to make the device shake in concert with sound effects and on-screen animations.”]

Nair said his team will also focus on making the on-device processing even faster. “A significant portion of the overall on-device processing is CV and deep learning,” he noted. “Deep networks are always evolving, and we will keep pushing that frontier.”

“Our teams are working continuously to further push the performance of our deep learning models in corner cases such a multi-people, low lighting, fast motions, and more,” added Hedau.

Whatever route Echo Show goes next, the teams behind it already know one thing for certain: they can collaborate their way through just about anything. “With Echo Show 10, there were a lot of assumptions we had when we started, but we didn’t know which would prove true until we got there,” Jara said. “We were kind of building the plane as we were flying it.”

Related content

IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
ES, B, Barcelona
Are you interested in defining the science strategy that enables Amazon to market to millions of customers based on their lifecycle needs rather than one-size-fits-all campaigns? We are seeking a Senior Applied Scientist to lead the science strategy for our Lifecycle Marketing Experimentation roadmap within the PRIMAS (Prime & Marketing analytics and science) team. The position is open to candidates in Amsterdam and Barcelona. In this role, you will own the end-to-end science approach that enables EU marketing to shift from broad, generic campaigns to targeted, cohort-based marketing that changes customer behavior. This is a high-ambiguity, high-impact role where you will define what problems are worth solving, build the science foundation from scratch, and influence senior business leaders on marketing strategy. You will work directly with Business Directors and channel leaders to solve critical business problems: how do we win back customers lost to competitors, convert Young Adults to Prime, and optimize marketing spend by de-averaging across customer cohorts. Key job responsibilities Science Strategy & Leadership: 1. Own the end-to-end science strategy for lifecycle marketing, defining the roadmap across audience targeting, behavioral modeling, and measurement 2. Navigate high ambiguity in defining customer journey frameworks and behavioral models – our most challenging science problem with no established playbook 3. Lead strategic discussions with business leaders translating business needs into science solutions and building trust across business and tech partners 4. Mentor and guide a team of 2-3 scientists and BIEs on technical execution while contributing hands-on to the hardest problems Advanced Customer Behavior Modeling: 1. Build sophisticated propensity models identifying customer cohorts based on lifecycle stage and complex behavioral patterns (e.g., Bargain hunters, Young adults Prime prospects) 2. Define customer journey frameworks using advanced techniques (Hidden Markov Models, sequential decision-making) to model how customers transition across lifecycle stages 3. Identify which customer behaviors and triggers drive lifecycle progression and what messaging/levers are most effective for each cohort 4. Integrate 1P behavioral data with 2P survey insights to create rich, actionable audience definitions Measurement & Cross-Workstream Integration: 1. Partner with measurement scientist to design experiments (RCTs) that isolate audience targeting effects from creative effects 2. Ensure audience definitions, journey models, and measurement frameworks work coherently across Meta, LiveRamp, and owned channels 3. Establish feedback loops connecting measurement insights back to model improvements About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 100+ people called WIMSI (WW Integrated Marketing Systems and Intelligence). WIMSI core mission is to accelerate marketing technology capabilities that enable de-averaged customer experiences across the marketing funnel: awareness, consideration, and conversion.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for Amazon, working with other acclaimed engineers and scientists. Key job responsibilities Join us to work as an integral part of a team that has diverse experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.