Echo Show 10, Charcoal, UI.jpg
A a team of designers, engineers, software developers, and scientists spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday.

The intersection of design and science

How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

During the prototyping stages of the journey that brought Echo Show 10 to life, the design, engineering, and science teams behind it encountered a surprise: one of their early assumptions was proving to be wrong.

The feature that most distinguishes the current generation from its predecessors is the way the device utilizes motion to automatically face users as they move around a room and interact with Alexa. This allows users to move around in the kitchen while consulting a recipe, or to move freely when engaging in a video call, with the screen staying in view.

Naturally, or so the team thought, users would want the device to remain facing them, matching where they were at all times. “You walk from the sink to the fridge, say, while you're using the device for a recipe, the device moves with you,” David Rowell, principal UX designer said. Because no hardware existed, the team had to create a method of prototyping, so they turned to virtual reality (VR). That approach enabled Echo Show 10 teams to work together to test assumptions — including their assumption about how the screen should behave. In this case, what they experienced in VR made them change course.

Echo Show 10 animation

“We had a paradigm that we thought worked really well, but once we tested it, we quickly discovered that we don't want to be one-to-one accurate,” said David Jara, senior UX motion designer. In fact, he said, the feedback led them to a somewhat unexpected conclusion: the device should actually lag behind the user. “Even though, from a pragmatic standpoint, you would think, ‘Well, this thing is too slow. Why can't it keep up?’, once you experienced it, the slowed down version was so much more pleasant.”

This was just one instance of a class of feedback and assumption-changing research that required a team of designers, engineers, software developers, and scientists to constantly iterate and adapt. Those teams spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday. Amazon Science talked to some of those team members to find out how they collaborated to tackle the challenges of developing a motorized smart display and device that pairs sound localization technology and computer vision models.

From idea to iteration

“The idea came from the product team about ways we could differentiate Echo Show,” Rowell said. “The idea came up about this rotating device, but we didn't really know what we wanted to use it for, which is when design came in and started creating use cases for how we could take advantage of motion.”

The design team envisioned a device that moved with users in a way that was both smooth and provided utility.

Adding motion to Echo Show was a really big undertaking. There were a lot of challenges, including how do we make sure that the experience is natural.
Dinesh Nair, applied science manager

That presented some significant challenges for the scientists involved in the project. “Adding motion to Echo Show was a really big undertaking,” said Dinesh Nair, an applied science manager in Emerging Devices. “There were a lot of challenges, including how do we make sure that the experience is natural, and not perceived as creepy by the user.”

Not only did the team have to account for creating a motion experience that felt natural, they had to do it all on a relatively small device. "Building state-of-the-art computer vision algorithms that were processed locally on the device was the greatest challenge we faced," said Varsha Hedau, applied science manager.

The multi-faceted nature of the project also prompted the teams to test the device in a fairly new way. “When the project came along, we decided that that VR would be a great way to actually demonstrate Echo Show 10, particularly with motion,” Rowell noted. “How could it move with you? How does it frame you? How do we fine tune all the ways we want machine learning to move with the correct person?”

Behind each of those questions lay challenges for the design, science, and engineering teams. To identify and address those challenges, the far-flung teams collaborated regularly, even in the midst of a pandemic. “It was interesting because we’re spread over many different locations in the US,” Rowell said. “We had a lot of video calls and VR meant teams could very quickly iterate. There was a lot of sharing and VR was great for that.”

Clearing the hurdles

One of the first hurdles the teams had to clear was how to accurately and consistently locate a person.

“The way we initially thought about doing this was to use spatial cues from your voice to estimate where you are,” Nair said. “Using the direction given by Echo’s chosen beam, the idea was to move the device to face you, and then computer vision algorithms would kick in.”

The science behind Echo Show 10

A combination of audio and visual signals guide the device’s movement, so the screen is always in view. Learn more about the science that empowers that intelligent motion.

That approach presented dual challenges. Current Echo devices form beams in multiple directions and then choose the best beam for speech recognition. “One of the issues with beam selection is that the accuracy is plus or minus 30 degrees for our traditional Echo devices,” Nair observed. “Another is issues with interference noise and sound reflections, for example if you place the device in a corner or there is noise near the person.” The acoustic reflections were particularly vexing since they interfere with the direct sound from the person speaking, especially when the device is playing music. Traditional sound source localization algorithms are also susceptible to these problems.

The Audio Technology team addressed these challenges to determine the direction of sound by developing a new sound localization algorithm. “By breaking down sound waves into their fundamental components and training a model to detect the direct sound, we can accurately determine the direction that sound is coming from,” said Phil Hilmes, director of audio technology. That, along with other algorithm developments, led the team to deliver a sound direction algorithm that was more robust to reflections and interference from noise or music playback, even when it is louder than the person’s voice.

Rowell said, “When we originally conceived of the device, we envisioned it being placed in open space, like a kitchen island so you could use the device effectively from multiple rooms.” Customer feedback during beta testing showed this assumption ran into literal walls. “We found that people actually put the device closer to walls so the device had to work well in these positions.” In some of these more challenging positions, using only audio to find the direction is still insufficient for accurate localization and extra clues from other sensors are needed.

Echo Show 10, Charcoal, Living room.jpg
Echo Show 10 designers initially thought it would be placed in open space, like a kitchen island. Feedback during beta testing showed customers placed it closer to walls, so the teams adjusted.

The design team worked with the science teams so the device relied not just on sound, but also on computer vision. Computer vision algorithms allow the device to locate humans within its field of view, helping it improve accuracy and distinguish people from sounds reflecting off walls, or coming from other sources. The teams also developed fusion algorithms for combining computer vision and sound direction into a model that optimized the final movement.

That collaboration enabled the design team to work with the device engineers to limit the device’s rotation. “That approach prevented the device from turning and basically looking away from you or looking at the wall or never looking at you straight on,” Rowell said. “It really tuned in the algorithms and got better at working out where you were.”

The teams undertook a thorough review of every assumption made in the design phase and adapted based on actual customer interactions. That included the realization that the device’s tracking speed didn’t need to be slow so much as it needed to be intelligent.

“The biggest challenge with Echo Show 10 was to make motion work intelligently,” said Meeta Mishra, principal technical program manager for Echo Devices. “The science behind the device movement is based on fusion of various inputs like sound source, user presence, device placement, and lighting conditions, to name a few. The internal dog-fooding, coupled with the work from home situation, brought forward the real user environment for our testing and iterations. This gave us wider exposure of varied home conditions needed to formulate the right user experience that will work in typical households and also strengthened our science models to make this device a delight.”

Frame rates and bounding boxes

Responding to the user feedback about the preference for intelligent motion meant the science and design teams also had to navigate issues around detection. “Video calls often run at 24 frames a second,” Nair observed. “But a deep learning network that accurately detects where you are, those don't run as fast, they’re typically running at 10 frames per second on the device.”

That latency meant several teams had to find a way to bridge the difference between the frame rates. “We had to work with not just the design team, but also the team that worked on the framing software,” Nair said. “We had to figure out how we could give intermediate results between detections by tracking the person.”

By breaking down sound waves into their fundamental components and training a model ... we can accurately determine the direction that sound is coming from.
Phil Hilmes, director of audio technology

Hedau and her team helped deliver the answer in the form of bounding boxes and Kalman filtering, an algorithm that provides estimates of some unknown variables given the measurements observed over time. That approach allows the device to, essentially, make informed guesses about a user’s movement.

During testing, the teams also discovered that the device would need to account for the manner in which a person interacted with it. “We found that when people are on a call, there are two use cases,” Rowell observed. “They're either are very engaged with the call, where they’re close to the device and looking at the device and the other person on the other end, or they're multitasking.”

The solution was born, yet again, from collaboration. “We went through a lot of experiments to model which user experience really works the best,” Hedau said. Those experiments resulted in utilizing the device’s CV to determine the distance between a person and Echo Show 10.

“We have settings based on the distance that the customer is from the device, which is a way to roughly measure how engaged a customer is,” Rowell said. “When a person is really up close, we don't want the device to move too much because the screen just feels like it's fidgety. But if somebody is on a call and multitasking, they're moving a lot. In this instance, we want smoother transitions.”

Looking to the future

The teams behind the Echo Show 10 are, unsurprisingly, already pondering what’s next. Rowell suggested that, in the future, the Echo Show might show a bit of personality. "We can make the device more playful," Rowell said. "We could start to express a lot of personality with the hardware." [Editor’s note: Some of this is currently enabled via APIs; certain games can “take on new personality through the ability to make the device shake in concert with sound effects and on-screen animations.”]

Nair said his team will also focus on making the on-device processing even faster. “A significant portion of the overall on-device processing is CV and deep learning,” he noted. “Deep networks are always evolving, and we will keep pushing that frontier.”

“Our teams are working continuously to further push the performance of our deep learning models in corner cases such a multi-people, low lighting, fast motions, and more,” added Hedau.

Whatever route Echo Show goes next, the teams behind it already know one thing for certain: they can collaborate their way through just about anything. “With Echo Show 10, there were a lot of assumptions we had when we started, but we didn’t know which would prove true until we got there,” Jara said. “We were kind of building the plane as we were flying it.”

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.