Arabic Alexa redone.jpeg
At launch, the Arabic version of Alexa will be available in the Kingdom of Saudi Arabia and the United Arab Emirates.

How Alexa learned Arabic

Arabic posed unique challenges for speech recognition, language understanding, and speech synthesis.

The Arabic version of Alexa launched in December 2021, in the Kingdom of Saudi Arabia and the United Arab Emirates, and like all new Alexa languages, it posed a unique set of challenges.

The first was to decide what forms of Arabic Alexa should speak. While the official written language in KSA and the UAE is Modern Standard Arabic (MSA), in everyday life, Arabic speakers use dialectal forms of Arabic, with many vernacular variations.

For customers, engaging with Alexa in their native dialects would be more natural than speaking MSA. So the Alexa AI team — including computational linguists — determined that Arabic Alexa would be able to understand requests in both MSA and Khaleeji (Gulf) dialects.

Alexa’s speech outputs, too, would be in both MSA and a Khaleeji dialect — MSA for formal speech, such as responses to requests for information, and Khaleeji for less formal speech, such as confirmation of alarm times and music selections. This means that someone issuing Alexa a request in one Arabic dialect might get a response in a different one. But that mirrors the experience that Arabic speakers in the region have with each other.

Al Fatiha.jpg

The core components of a new Alexa model are automatic speech recognition (ASR), which converts speech into text; natural-language understanding (NLU), which interprets the text to initiate actions; and text-to-speech (TTS), which converts NLU outputs into synthesized speech.

A key question for all three components was how to render utterances textually, both as ASR output and TTS input. Written Arabic suppresses short vowel sounds: it would be sort of like spelling the English word “begin” as “bgn”. People are usually able to infer the mssng vwls frm cntxt.

But in formal and educational texts — such as reading primers for children — vowels and some consonantal sounds are indicated by diacritical marks. So the Alexa AI team had to decide whether the ASR output should include diacritics or not.

One of the major differences between dialects is the vowel sounds, so omitting diacritics makes it easier to create a speech representation that’s applicable to all dialects, which is useful for ASR and NLU.

Moreover, there is no published writing in forms of Arabic other than MSA, so there’s no standard orthography for them, either. Asking annotators to add diacritics could introduce more ambiguity than it alleviates. In the end, the Alexa AI team decided that ASR output should use only two diacritics, the shaddah and maddah, because they help with pronunciation accuracy on entity names that pass from ASR through NLU to TTS.

These design decisions had separate implications for the various Alexa AI teams — ASR, NLU, and TTS — and of course, each of the teams faced its own particular challenges as well.

ASR

One of the ASR team’s goals was to provide a consistent output, given the lack of standardized orthography for both dialectal Arabic and foreign loanwords. One of their decisions was to represent loanwords — such as the names of French or American musicians or albums — using Latin script.

ASR researchers.png
L to R: Applied-science manager Volker Leutnant and applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan

To that end, they used a so-called catalogue ingestion normalizer, which takes in a catalogue of terms in French and English and converts the corresponding Arabic-script outputs of the ASR model into Latin script.

Applied-science manager Volker Leutnant and his colleagues on the Alexa Speech team — including applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan — began with an English acoustic model, which started out better attuned to human speech sounds than a randomly initialized model. They trained it using public datasets of Arabic speech in the target Khaleeji dialects and data from Cleo, an Alexa skill that allows multilingual customers to help train new-language models by responding to voice prompts with open-form utterances. The Cleo data included labeled utterances in additional Arabic dialects, allowing the ASR model to provide more consistent user experience for a wider range of customers.

NLU

An NLU model takes in utterances transcribed by ASR and classifies them according to intent, such as playing music. It also identifies all the slots in the utterance — such as song names or artist names — and their slot values — such as the particular artist name “Ahlam”.

The first thing the NLU model needs to do is to tokenize the input, or split it into semantic units that should be processed separately. In many languages, tokenization happens naturally during ASR. But Arabic uses word affixes — prefixes and suffixes — to convey contextual meanings.

Some of those affixes, such as articles and prepositions — the Arabic equivalents of “the” or “to” — are irrelevant to NLU and can be left attached to their word stems. But some, such as possessives, require independent slot tags. The suffix meaning “my”, for instance, in the Arabic for “my music”, tells the NLU model just which music the customer wants played. Language engineer Yangsook Park and her colleagues designed the tokenizer to split off those important affixes and leave the rest attached to their stems.

Announce breakfast.jpg

The tokenized input passes to the NLU model, which is a trilingual model, able to process inputs in Arabic, French or English. This not only helps the model handle loanwords used in Arabic, but it also enables the transfer of knowledge from French and English, which currently have more abundant training data than Arabic.

Research science manager Karolina Owczarzak and her team at Alexa AI — including research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio — resampled the existing Arabic training data to expand the variety of training examples. For instance, their resampling tool replaces the names of artists or songs in existing utterances with other names from the song catalogue.

A crucial consideration was how many resampled utterances with the same basic structure to include in the training data. Using too many examples based on the same template — such as “let me hear <SongName> by <ArtistName>” or “play the <ArtistName> song <SongName>” —could diminish the model’s performance on other classes of utterance.

To compute the optimal number of examples per utterance template, the NLU researchers constructed a measure of utterance complexity, which factored in both the number of slots in the utterance template and the number of possible values per slot. The more complex the utterance template, the more examples it required.

NLU researchers.png
L to R: Language engineer Yangsook Park, research science manager Karolina Owczarzak, and research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio

The model-training process began with a BERT-based language model, which was pretrained on all three languages using unlabeled data and the standard language-modeling objective. That is, words of sentences were randomly masked out, and the model learned to predict the missing words from those that remained. In this stage, the NLU team augmented the Arabic dataset with data translated from English by AWS Translate.

Then the researchers trained the model to perform NLU tasks by fine-tuning it on a large corpus of annotated French and English data — that is, utterances whose intents and slots had been labeled. The idea was to use the abundant data in those two languages to teach the model some general principles of NLU processing, which could then be transferred to a model fine-tuned on the sparser labeled Arabic data.

Finally, the model was fine-tuned again on equal amounts of labeled training data in all three languages, to ensure that fine-tuning on Arabic didn’t diminish the model’s performance on the other two languages.

TTS

Whereas diacritics can get in the way of NLU, they’re indispensable to TTS: the Alexa speech synthesizer needs to know precisely which vowel sounds to produce as output. So when the Arabic TTS model gets a text string from one of Alexa’s functions — such as confirmation of a music selection from the music player — it runs it through a diacritizer, which adds the full set of diacritics back in.

TTS team.png
L to R: Software engineer Tarek Badr, applied scientist Fan Yang, and language engineer Merouane Benhassine.

The TTS researchers, led by software engineer Tarek Badr and applied scientist Fan Yang, trained the diacritizer largely on MSA texts, with some supplemental data in Khaleeji dialects, which the Alexa team compiled itself. Inferring the correct diacritics depends on the whole utterance context: as an analogy, whether “crw” represents “craw”, “crew”, or “crow” could usually be determined from context. So the diacritizer model has an attention mechanism that attends over the complete utterance.

Outputs that should be in Khaleeji Arabic then pass through a module that converts the diacritics to representations of the appropriate short-vowels sounds, along with any other necessary transformations. This is a rule-based system that language engineer Merouane Benhassine and his colleagues built to capture the predictable relationships between MSA and Khaleeji Arabic.

The text-to-speech model itself is a neural network, which takes text as input and outputs acoustic waveforms. It takes advantage of the Amazon TTS team’s recent work on expressive speech to endow the Arabic TTS model with a lively, conversational style by default.

A new Alexa language is never simply a new language: it’s a new language targeted to a specific new locale, because customer needs and linguistic practices vary by country. Going forward, the Alexa AI team will continue working to expand Arabic to additional locales — even as it continues to extend Alexa to whole new language families.

Research areas

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
Are you passionate about leveraging your applied science skills to deliver actionable insights that impact daily business decisions? Do you thrive using causal inference, experimentation, and Machine Learning/AI to answer challenging product and customer behavior questions? Do you want to be a technical leader and build flexible and global solutions for complex financial, risk, and causal problems? If so, here is a great opportunity to consider! Amazon B2B Payments & Lending is seeking a Senior Applied Scientist who will combine their technical expertise with business intuition to generate critical insights that will set the strategic direction of the business. You will be a thought leader on the team, help set the team's strategic focus and roadmaps, and design and build systems/solutions that support financial products, working closely with business/product partners and engineers. You will utilize causal inference/experimentation/ML/AI methodologies, data and coding skills, problem solving and analytical skills, and excellent communication to deliver customer value. As a Senior Applied Scientist on our team, you'll play a pivotal role in uncovering actionable insights that shape the strategic direction of our products and services. You'll work closely with business stakeholders, data scientists, and engineers to tackle complex problems at the intersection of finance, risk modeling, and customer behavior. A day in the life - Collaborate with product, data, and engineering teams to identify key business and customer questions that can be answered through advanced analytics and machine learning - Design and build flexible, scalable solutions that leverage causal inference, experimentation, and applied ML/AI to provide critical insights that drive strategic decisions - Present analyses and recommendations to stakeholders, while also mentoring more junior data scientists and innovating on the team's capabilities About the team The Amazon B2B Payments & Lending team is a fast-paced, highly collaborative group focused on enabling seamless financial experiences for our business customers. We're building innovative solutions that leverage the power of data, AI, and automation to deliver frictionless payment processing, credit decisioning, and financial management tools. Our team culture is one of curiosity, creativity, and a relentless drive to delight our customers. We value bold thinking, data-driven decision making, and a willingness to experiment and learn. If you're passionate about using your technical expertise to drive meaningful business impact, this is an exciting opportunity to make a difference.