Arabic Alexa redone.jpeg
At launch, the Arabic version of Alexa will be available in the Kingdom of Saudi Arabia and the United Arab Emirates.

How Alexa learned Arabic

Arabic posed unique challenges for speech recognition, language understanding, and speech synthesis.

The Arabic version of Alexa launched in December 2021, in the Kingdom of Saudi Arabia and the United Arab Emirates, and like all new Alexa languages, it posed a unique set of challenges.

The first was to decide what forms of Arabic Alexa should speak. While the official written language in KSA and the UAE is Modern Standard Arabic (MSA), in everyday life, Arabic speakers use dialectal forms of Arabic, with many vernacular variations.

For customers, engaging with Alexa in their native dialects would be more natural than speaking MSA. So the Alexa AI team — including computational linguists — determined that Arabic Alexa would be able to understand requests in both MSA and Khaleeji (Gulf) dialects.

Alexa’s speech outputs, too, would be in both MSA and a Khaleeji dialect — MSA for formal speech, such as responses to requests for information, and Khaleeji for less formal speech, such as confirmation of alarm times and music selections. This means that someone issuing Alexa a request in one Arabic dialect might get a response in a different one. But that mirrors the experience that Arabic speakers in the region have with each other.

Al Fatiha.jpg

The core components of a new Alexa model are automatic speech recognition (ASR), which converts speech into text; natural-language understanding (NLU), which interprets the text to initiate actions; and text-to-speech (TTS), which converts NLU outputs into synthesized speech.

A key question for all three components was how to render utterances textually, both as ASR output and TTS input. Written Arabic suppresses short vowel sounds: it would be sort of like spelling the English word “begin” as “bgn”. People are usually able to infer the mssng vwls frm cntxt.

But in formal and educational texts — such as reading primers for children — vowels and some consonantal sounds are indicated by diacritical marks. So the Alexa AI team had to decide whether the ASR output should include diacritics or not.

One of the major differences between dialects is the vowel sounds, so omitting diacritics makes it easier to create a speech representation that’s applicable to all dialects, which is useful for ASR and NLU.

Moreover, there is no published writing in forms of Arabic other than MSA, so there’s no standard orthography for them, either. Asking annotators to add diacritics could introduce more ambiguity than it alleviates. In the end, the Alexa AI team decided that ASR output should use only two diacritics, the shaddah and maddah, because they help with pronunciation accuracy on entity names that pass from ASR through NLU to TTS.

These design decisions had separate implications for the various Alexa AI teams — ASR, NLU, and TTS — and of course, each of the teams faced its own particular challenges as well.

ASR

One of the ASR team’s goals was to provide a consistent output, given the lack of standardized orthography for both dialectal Arabic and foreign loanwords. One of their decisions was to represent loanwords — such as the names of French or American musicians or albums — using Latin script.

ASR researchers.png
L to R: Applied-science manager Volker Leutnant and applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan

To that end, they used a so-called catalogue ingestion normalizer, which takes in a catalogue of terms in French and English and converts the corresponding Arabic-script outputs of the ASR model into Latin script.

Applied-science manager Volker Leutnant and his colleagues on the Alexa Speech team — including applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan — began with an English acoustic model, which started out better attuned to human speech sounds than a randomly initialized model. They trained it using public datasets of Arabic speech in the target Khaleeji dialects and data from Cleo, an Alexa skill that allows multilingual customers to help train new-language models by responding to voice prompts with open-form utterances. The Cleo data included labeled utterances in additional Arabic dialects, allowing the ASR model to provide more consistent user experience for a wider range of customers.

NLU

An NLU model takes in utterances transcribed by ASR and classifies them according to intent, such as playing music. It also identifies all the slots in the utterance — such as song names or artist names — and their slot values — such as the particular artist name “Ahlam”.

The first thing the NLU model needs to do is to tokenize the input, or split it into semantic units that should be processed separately. In many languages, tokenization happens naturally during ASR. But Arabic uses word affixes — prefixes and suffixes — to convey contextual meanings.

Some of those affixes, such as articles and prepositions — the Arabic equivalents of “the” or “to” — are irrelevant to NLU and can be left attached to their word stems. But some, such as possessives, require independent slot tags. The suffix meaning “my”, for instance, in the Arabic for “my music”, tells the NLU model just which music the customer wants played. Language engineer Yangsook Park and her colleagues designed the tokenizer to split off those important affixes and leave the rest attached to their stems.

Announce breakfast.jpg

The tokenized input passes to the NLU model, which is a trilingual model, able to process inputs in Arabic, French or English. This not only helps the model handle loanwords used in Arabic, but it also enables the transfer of knowledge from French and English, which currently have more abundant training data than Arabic.

Research science manager Karolina Owczarzak and her team at Alexa AI — including research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio — resampled the existing Arabic training data to expand the variety of training examples. For instance, their resampling tool replaces the names of artists or songs in existing utterances with other names from the song catalogue.

A crucial consideration was how many resampled utterances with the same basic structure to include in the training data. Using too many examples based on the same template — such as “let me hear <SongName> by <ArtistName>” or “play the <ArtistName> song <SongName>” —could diminish the model’s performance on other classes of utterance.

To compute the optimal number of examples per utterance template, the NLU researchers constructed a measure of utterance complexity, which factored in both the number of slots in the utterance template and the number of possible values per slot. The more complex the utterance template, the more examples it required.

NLU researchers.png
L to R: Language engineer Yangsook Park, research science manager Karolina Owczarzak, and research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio

The model-training process began with a BERT-based language model, which was pretrained on all three languages using unlabeled data and the standard language-modeling objective. That is, words of sentences were randomly masked out, and the model learned to predict the missing words from those that remained. In this stage, the NLU team augmented the Arabic dataset with data translated from English by AWS Translate.

Then the researchers trained the model to perform NLU tasks by fine-tuning it on a large corpus of annotated French and English data — that is, utterances whose intents and slots had been labeled. The idea was to use the abundant data in those two languages to teach the model some general principles of NLU processing, which could then be transferred to a model fine-tuned on the sparser labeled Arabic data.

Finally, the model was fine-tuned again on equal amounts of labeled training data in all three languages, to ensure that fine-tuning on Arabic didn’t diminish the model’s performance on the other two languages.

TTS

Whereas diacritics can get in the way of NLU, they’re indispensable to TTS: the Alexa speech synthesizer needs to know precisely which vowel sounds to produce as output. So when the Arabic TTS model gets a text string from one of Alexa’s functions — such as confirmation of a music selection from the music player — it runs it through a diacritizer, which adds the full set of diacritics back in.

TTS team.png
L to R: Software engineer Tarek Badr, applied scientist Fan Yang, and language engineer Merouane Benhassine.

The TTS researchers, led by software engineer Tarek Badr and applied scientist Fan Yang, trained the diacritizer largely on MSA texts, with some supplemental data in Khaleeji dialects, which the Alexa team compiled itself. Inferring the correct diacritics depends on the whole utterance context: as an analogy, whether “crw” represents “craw”, “crew”, or “crow” could usually be determined from context. So the diacritizer model has an attention mechanism that attends over the complete utterance.

Outputs that should be in Khaleeji Arabic then pass through a module that converts the diacritics to representations of the appropriate short-vowels sounds, along with any other necessary transformations. This is a rule-based system that language engineer Merouane Benhassine and his colleagues built to capture the predictable relationships between MSA and Khaleeji Arabic.

The text-to-speech model itself is a neural network, which takes text as input and outputs acoustic waveforms. It takes advantage of the Amazon TTS team’s recent work on expressive speech to endow the Arabic TTS model with a lively, conversational style by default.

A new Alexa language is never simply a new language: it’s a new language targeted to a specific new locale, because customer needs and linguistic practices vary by country. Going forward, the Alexa AI team will continue working to expand Arabic to additional locales — even as it continues to extend Alexa to whole new language families.

Research areas

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
JP, 13, Tokyo
The JP Books - Manga team is looking for an Applied Scientist to participate in our AI related efforts to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be expected to research, design and build/train/tune models and provide recommendations in areas including but not limited to natural language processing (automatic translation, summarization, extraction) and image processing (boundary detection, image understanding, image generation). The ideal candidate will have strong knowledge in the areas of Computer Vision, Translations and or Image understanding/generation. This is the ideal role if you are excited about leveraging science for tangible business impact to the Manga books business. Amazon encourages publications, and you will work within an international team of engineers, all based in Tokyo, Japan while collaborating with partner scientists in Tokyo and Seattle. Key job responsibilities As an Applied Scientist, your responsibilities will be: - Spot opportunities for innovation using AI for the JP Manga business, and publish to internal or external conferences. - Work closely with other Books scientists and engineers to build, review and improve your model design proposals. - Partner with product managers and other business stakeholders, documenting and explaining your progress in business reviews, and being the technical voice in charge of your product. - Be active in the community, participating in science education/growth activities for Books and Amazon JP - Keep up to date with scientific development in related field About the team Our team develops and owns the experience for Manga books on Amazon in Japan. We build products powering the solutions offered to publishers, authors and customers in Japan and worldwide. We interact with Product Managers and business stakeholders to develop features that allow us to better serve our customers. We place strong emphasis on continuous learning through internal mechanisms for our team to keep on growing their expertise and keep up with the state of the art. Our mission is to establish Amazon Manga as the go-to destination for digital and print Manga.