Arabic Alexa redone.jpeg
At launch, the Arabic version of Alexa will be available in the Kingdom of Saudi Arabia and the United Arab Emirates.

How Alexa learned Arabic

Arabic posed unique challenges for speech recognition, language understanding, and speech synthesis.

The Arabic version of Alexa launched in December 2021, in the Kingdom of Saudi Arabia and the United Arab Emirates, and like all new Alexa languages, it posed a unique set of challenges.

The first was to decide what forms of Arabic Alexa should speak. While the official written language in KSA and the UAE is Modern Standard Arabic (MSA), in everyday life, Arabic speakers use dialectal forms of Arabic, with many vernacular variations.

For customers, engaging with Alexa in their native dialects would be more natural than speaking MSA. So the Alexa AI team — including computational linguists — determined that Arabic Alexa would be able to understand requests in both MSA and Khaleeji (Gulf) dialects.

Alexa’s speech outputs, too, would be in both MSA and a Khaleeji dialect — MSA for formal speech, such as responses to requests for information, and Khaleeji for less formal speech, such as confirmation of alarm times and music selections. This means that someone issuing Alexa a request in one Arabic dialect might get a response in a different one. But that mirrors the experience that Arabic speakers in the region have with each other.

Al Fatiha.jpg

The core components of a new Alexa model are automatic speech recognition (ASR), which converts speech into text; natural-language understanding (NLU), which interprets the text to initiate actions; and text-to-speech (TTS), which converts NLU outputs into synthesized speech.

A key question for all three components was how to render utterances textually, both as ASR output and TTS input. Written Arabic suppresses short vowel sounds: it would be sort of like spelling the English word “begin” as “bgn”. People are usually able to infer the mssng vwls frm cntxt.

But in formal and educational texts — such as reading primers for children — vowels and some consonantal sounds are indicated by diacritical marks. So the Alexa AI team had to decide whether the ASR output should include diacritics or not.

One of the major differences between dialects is the vowel sounds, so omitting diacritics makes it easier to create a speech representation that’s applicable to all dialects, which is useful for ASR and NLU.

Moreover, there is no published writing in forms of Arabic other than MSA, so there’s no standard orthography for them, either. Asking annotators to add diacritics could introduce more ambiguity than it alleviates. In the end, the Alexa AI team decided that ASR output should use only two diacritics, the shaddah and maddah, because they help with pronunciation accuracy on entity names that pass from ASR through NLU to TTS.

These design decisions had separate implications for the various Alexa AI teams — ASR, NLU, and TTS — and of course, each of the teams faced its own particular challenges as well.

ASR

One of the ASR team’s goals was to provide a consistent output, given the lack of standardized orthography for both dialectal Arabic and foreign loanwords. One of their decisions was to represent loanwords — such as the names of French or American musicians or albums — using Latin script.

ASR researchers.png
L to R: Applied-science manager Volker Leutnant and applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan

To that end, they used a so-called catalogue ingestion normalizer, which takes in a catalogue of terms in French and English and converts the corresponding Arabic-script outputs of the ASR model into Latin script.

Applied-science manager Volker Leutnant and his colleagues on the Alexa Speech team — including applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan — began with an English acoustic model, which started out better attuned to human speech sounds than a randomly initialized model. They trained it using public datasets of Arabic speech in the target Khaleeji dialects and data from Cleo, an Alexa skill that allows multilingual customers to help train new-language models by responding to voice prompts with open-form utterances. The Cleo data included labeled utterances in additional Arabic dialects, allowing the ASR model to provide more consistent user experience for a wider range of customers.

NLU

An NLU model takes in utterances transcribed by ASR and classifies them according to intent, such as playing music. It also identifies all the slots in the utterance — such as song names or artist names — and their slot values — such as the particular artist name “Ahlam”.

The first thing the NLU model needs to do is to tokenize the input, or split it into semantic units that should be processed separately. In many languages, tokenization happens naturally during ASR. But Arabic uses word affixes — prefixes and suffixes — to convey contextual meanings.

Some of those affixes, such as articles and prepositions — the Arabic equivalents of “the” or “to” — are irrelevant to NLU and can be left attached to their word stems. But some, such as possessives, require independent slot tags. The suffix meaning “my”, for instance, in the Arabic for “my music”, tells the NLU model just which music the customer wants played. Language engineer Yangsook Park and her colleagues designed the tokenizer to split off those important affixes and leave the rest attached to their stems.

Announce breakfast.jpg

The tokenized input passes to the NLU model, which is a trilingual model, able to process inputs in Arabic, French or English. This not only helps the model handle loanwords used in Arabic, but it also enables the transfer of knowledge from French and English, which currently have more abundant training data than Arabic.

Research science manager Karolina Owczarzak and her team at Alexa AI — including research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio — resampled the existing Arabic training data to expand the variety of training examples. For instance, their resampling tool replaces the names of artists or songs in existing utterances with other names from the song catalogue.

A crucial consideration was how many resampled utterances with the same basic structure to include in the training data. Using too many examples based on the same template — such as “let me hear <SongName> by <ArtistName>” or “play the <ArtistName> song <SongName>” —could diminish the model’s performance on other classes of utterance.

To compute the optimal number of examples per utterance template, the NLU researchers constructed a measure of utterance complexity, which factored in both the number of slots in the utterance template and the number of possible values per slot. The more complex the utterance template, the more examples it required.

NLU researchers.png
L to R: Language engineer Yangsook Park, research science manager Karolina Owczarzak, and research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio

The model-training process began with a BERT-based language model, which was pretrained on all three languages using unlabeled data and the standard language-modeling objective. That is, words of sentences were randomly masked out, and the model learned to predict the missing words from those that remained. In this stage, the NLU team augmented the Arabic dataset with data translated from English by AWS Translate.

Then the researchers trained the model to perform NLU tasks by fine-tuning it on a large corpus of annotated French and English data — that is, utterances whose intents and slots had been labeled. The idea was to use the abundant data in those two languages to teach the model some general principles of NLU processing, which could then be transferred to a model fine-tuned on the sparser labeled Arabic data.

Finally, the model was fine-tuned again on equal amounts of labeled training data in all three languages, to ensure that fine-tuning on Arabic didn’t diminish the model’s performance on the other two languages.

TTS

Whereas diacritics can get in the way of NLU, they’re indispensable to TTS: the Alexa speech synthesizer needs to know precisely which vowel sounds to produce as output. So when the Arabic TTS model gets a text string from one of Alexa’s functions — such as confirmation of a music selection from the music player — it runs it through a diacritizer, which adds the full set of diacritics back in.

TTS team.png
L to R: Software engineer Tarek Badr, applied scientist Fan Yang, and language engineer Merouane Benhassine.

The TTS researchers, led by software engineer Tarek Badr and applied scientist Fan Yang, trained the diacritizer largely on MSA texts, with some supplemental data in Khaleeji dialects, which the Alexa team compiled itself. Inferring the correct diacritics depends on the whole utterance context: as an analogy, whether “crw” represents “craw”, “crew”, or “crow” could usually be determined from context. So the diacritizer model has an attention mechanism that attends over the complete utterance.

Outputs that should be in Khaleeji Arabic then pass through a module that converts the diacritics to representations of the appropriate short-vowels sounds, along with any other necessary transformations. This is a rule-based system that language engineer Merouane Benhassine and his colleagues built to capture the predictable relationships between MSA and Khaleeji Arabic.

The text-to-speech model itself is a neural network, which takes text as input and outputs acoustic waveforms. It takes advantage of the Amazon TTS team’s recent work on expressive speech to endow the Arabic TTS model with a lively, conversational style by default.

A new Alexa language is never simply a new language: it’s a new language targeted to a specific new locale, because customer needs and linguistic practices vary by country. Going forward, the Alexa AI team will continue working to expand Arabic to additional locales — even as it continues to extend Alexa to whole new language families.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.
US, VA, Arlington
he WWGST (Worldwide Grocery Stores Tech) teams are seeking a highly motivated Senior Research Scientist (Level 6) to join our team that is focused on building new technologies for grocery stores. We are a team of applied scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping such as Dash Cart or Self-CheckOut. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011 Key job responsibilities As a Senior Research Scientist, you will help solve a variety of technical challenges and mentor other junior scientists. You will be leader of the science team to resolve the hard problems. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.