How Amazon Robotics researchers are solving a “beautiful problem”

Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

The rate of innovation in machine learning is simply off the chart — what is possible today was barely on the drawing board even a handful of years ago. At Amazon, this has manifested in a robotic system that can not only identify potential space in a cluttered storage bin, but also sensitively manipulate that bin’s contents to create that space before successfully placing additional items inside — a result that, until recently, was impossible.

Related content
Why multimodal identification is a crucial step in automating item identification at Amazon scale.

This journey starts when a product arrives at an Amazon fulfillment center (FC). The first order of business is to make it available to customers by adding it to the FC's available inventory.

The stowing process

In practice, this means picking it up and stowing it in a storage pod. A pod is akin to a big bookcase, made of sturdy yellow fabric, that comprises up to 40 cubbies, known as bins. Each bin has strips of elastic across its front to keep the items inside from falling out. These pods are carried by a wheeled robot, or drive unit, to the workstation of the Amazon associate doing the stowing. When the pod is mostly full, it is wheeled back into the warehouse, where the items it contains await a customer order.

Stowing is a major component of Amazon’s operations. It is also a task that seemed an intractable problem from a robotic automation perspective, due to the subtlety of thought and dexterity required to do the job.

Picture the task. You have an item for stowing in your hand. You gauge its size and weight. You look at the array of bins before you, implicitly perceiving which are empty, which are already full, which bins have big chunks of space in them, and which have the potential to make space if you, say, pushed all the items currently in the bin to one side. You select a bin, move the elastic out of the way, make room for the item, and pop it in. Job done. Now repeat.

“Breaking all existing industrial robot thinking”

This stow task requires two high-level capabilities not generally found in robots. One, an excellent understanding of the three-dimensional world. Two, the ability to manipulate a wide range of packaged but sometimes fragile objects — from lightbulbs to toys — firmly, but sensitively: pushing items gently aside, flipping them up, slotting one item at an angle between other items and so on.

A simulation of robotic stowing

For a robotic system to stand a chance at this task, it would need intelligent visual perception, a free-moving robot arm, an end-of-arm manipulator unknown to engineering, and a keen sense of how much force it is exerting. In short: good luck with that.

“Stow fundamentally breaks all existing industrial robotic thinking,” says Siddhartha Srinivasa, director of Amazon Robotics AI. “Industrial manipulators are typically bulky arms that execute fixed trajectories very precisely. It’s very positional.”

When Srinivasa joined Amazon in 2018, multiple robotics programs had already attempted to stow to fabric pods using stiff positional manipulators.

“They failed miserably at it because it's a nightmare. It just doesn't work unless you have the right computational tool: you must not think physically, but computationally.”

Srinivasa knew the science for robotic stow didn’t exist yet, but he knew the right people to hire to develop it. He approached Parker Owan as he completed his PhD at the University of Washington.

A “beautiful problem”

Parker Owan, Robotics AI senior applied scientist, poses next to a robotic arm and in front of a yellow soft sided storage pod
Parker Owan, Robotics AI senior applied scientist

“At the time I was working on robotic contact, imitation learning, and force control,” says Owan, now a Robotics AI senior applied scientist. “Sidd said ‘Hey, there’s this beautiful problem at Amazon that you might be interested in taking a look at’, and he left it at that.”

The seed was planted. Owan joined Amazon, and then in 2019 dedicated himself to the stow challenge.

“I came at it from the perspective of decision-making algorithms: the perception needs; how to match items to the appropriate bin; how to leverage information of what's in the bin to make better decisions; motion planning for a robot arm moving through free space; and then actually making contact with products and creating space in bins.”

Aaron Parness, Robotics AI senior manager of applied science, poses near a robotic arm
Aaron Parness, Robotics AI senior manager of applied science

About six months into his exploratory work, Owan was joined by a small team of applied scientists, and hardware expert Aaron Parness, now a Robotics AI senior manager of applied science. Parness admits he was skeptical.

“My initial reaction was ‘Oh, how brave and naïve that this guy, fresh out of his PhD, thinks robots can deal with this level of clutter and physical contact!’”

But Parness was quickly hooked. “Once you see how the problem can be broken down and structured, it suddenly becomes clear that there's something super useful and interesting here.”

“Uncharted territory”

From a hardware perspective, the team needed to find a robot arm with force feedback. They tried several, before the team landed on an effective model. The arm provides feedback hundreds of times per second on how much force it is applying and any resistance it is meeting. Using this information to control the robot is called compliant manipulation.

“We knew from the beginning that we needed compliant manipulation, and we hadn't seen anybody in industry do this at scale before,” says Owan. “It was uncharted territory.”

Parness got to work on the all-important hardware. The problem of moving the elastics aside to stow an item was resolved using a relatively simple hooking system.

How the band separator works

The end-of-arm tool (EOAT) proved to be a next-level challenge. One reason that stowing is difficult for robots is the sheer diversity of items Amazon sells, and their associated packaging. You might have an unpumped soccer ball next to a book, next to a sports drink, next to a T-shirt, next to a jewelry box. A robot would need to handle this level of variety. The EOAT evolved quickly over two years, with multiple failures and iterations.

Paddles grip an array of items

“In the end, we found that gently squeezing an item between two paddles was the more stable way to hold items than using suction cups or mechanical pinchers,” says Parness.

However, the paddle set up presented a challenge when trying to insert held items into bins — the paddles kept getting in the way. Parness and his growing team hit upon an alternative: holding the item next to a bin, before simultaneously opening the paddles and using a plunger to push the item in. This drop-and-push technique was prone to errors because not all items reacted to it in the same way.

The EOAT’s next iteration saw the team put miniature conveyor belts on each paddle, enabling the EOAT to feed items smoothly into the bins without having to enter the bin itself.

The miniature conveyor belt works to bring an item to its designated bin

“With that change, our stowing success rate jumped from about 80% to 99%. That was a eureka moment for us — we knew we had our winner,” says Parness.

Making space with motion primitives

The ability to place items in bins is crucial, but so is making space in cluttered bins. To better understand what would be required of the robot system, the team closely studied how they performed the task themselves. Owan even donned a head camera to record his efforts.

The team was surprised to find that the vast majority of space-making hand movements within a fabric bin could be boiled down to four types or “motion primitives”. These include a sideways sweep of the bin’s current contents, flipping upright things that are lying flat, stacking, and slotting something at an angle into the gap between other items.

The process of making space

The engineers realized that the EOAT’s paddles could not get involved with this bin-manipulation task, because they would get in the way. The solution, in the end, was surprisingly simple: a thin metal sheet that could extend from the EOAT, dubbed “the spatula”. The extended spatula can firmly, but sensitively, push items to one side, flip them up, and generally be used to make room in a bin, before the paddles eject an item into the space created.

But how does the system know how full the pod’s bins are, and how does it decide where, and how, it will make space for the next item to be stowed? This is where visual perception and machine learning come into play.

Deciding where to attempt to stow an item requires a good understanding of how much space, in total, is available in each fabric bin. In an ideal world, this is where 3D sensor technologies such as LiDAR would be used. However, because the elastic cords across the front of every bin partially blocks the view inside, this option isn’t feasible.

A robot arm executes motion primitives

Instead, the system’s visual perception is based on cameras pointed at the pod that feed their image data to a machine learning system. Based on what it can see of each bin’s contents, the system “erases” the elastics and models what is lying unseen in the bin, and then estimates the total available space in each of the pod’s bins.

Often there is space available in a cluttered bin, but it is not contiguous: there are pockets of space here and there. The ML system — based in part on existing models developed by the Amazon Fulfillment Technologies team — then predicts how much contiguous space it can create in each bin, given the motion primitives at its disposal.

How the perception system "sees" available space

“These primitives, each of which can be varied as needed, can be chained in infinitely many ways,” Srinivasa explains. “It can, say, flip it over here, then push it across and drop the item in. Humans are great at identifying these primitives in the first place, and machine learning is great at organizing and orchestrating them.”

When the system has a firm idea of the options, it considers the items in its buffer — an area near the robot arm’s gantry in which products of various shapes and sizes wait to be stowed — and decides which items are best placed in which bins for maximum efficiency.

“For every potential stow, the system will predict its likelihood of success,” says Parness. “When the best prediction of success falls to about 96%, which happens when a pod is nearly full, we send that pod off and wheel in a new one.”

“Robots and people work together”

At the end of summer 2021, with its potential feasibility and value becoming clearer, the senior leadership team at Amazon gave the project their full backing.

“They said ‘As fast as you can go; whatever you need’. So this year has been a wild, wild ride. It feels like we’re a start-up within Amazon,” says Parness, who noted the approach has significant advantages for FC employees as well.

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

“Robots and people work together in a hybrid system. Robots handle repetitive tasks and easily reach to the high and low shelves. Humans handle more complex items that require intuition and dexterity. The net effect will be more efficient operations that are also safer for our workers.”

Prototypes of the robotic stow workstation are installed at a lab in Seattle, Washington, and another system has been installed at an FC in Sumner, Washington, where it deals with live inventory. Already, the prototypes are stowing items well and showcasing the viability of the system.

“And there are always four or five scientists and engineers hovering around the robot, documenting issues and looking for improvements,” says Parness.

Stow will be the first brownfield automation project, at scale, at Amazon. We're enacting a future in which robots and humans can actually work side by side without us having to dramatically change the human working environment.
Siddhartha Srinivasa

This year, in a stowing test designed to include a variety of challenging product attributes — bagged items, irregular items with an offset center of gravity, and so on — the system successfully stowed 94 of 95 items. Of course, some items can never be stowed by this system, including particularly bulky or heavy products, or cylindrical items that don’t behave themselves on conveyor belts. The team’s ultimate target is to be able to stow 85% of products stocked by a standard Amazon FC.

“Interacting with chaotic arrangements of items, unknown items with different shapes and sizes, and learning to manipulate them in intelligent ways, all at Amazon scale — this is ground-breaking,” says Owan. “I feel like I’m at ground zero for a big thing, and that’s what makes me excited to come to work every day.”

“Stow will be the first brownfield automation project, at scale, at Amazon,” says Srinivasa. “Surgically inserting automation into existing buildings is very challenging, but we're enacting a future in which robots and humans can actually work side by side without us having to dramatically change the human working environment.

Related content
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

"One of the advantages of the type of brownfield automation we do at Robotics AI is that it’s minimally disruptive to the process flow or the building space, which means that our robots can truly work alongside humans," Srinivasa adds. "This is also a future benefit of compliant arms as they can, via software and AI, be made safer than industrial arms.”

Robots and humans working side by side is key to the long-term expansion of this technology beyond retail, says Parness.

“Think of robots loading delicate groceries or, longer term, loading dishwashers or helping people with tasks around the house. Robots with a sense of force in their control loop is a new paradigm in compliant-robotics applications.”

Research areas

Related content

US, MA, Boston
As part of Alexa CAS team, our mission is to provide scalable and reliable evaluation of the state-of-the-art Conversational AI. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), to invent and build end-to-end evaluation of how customers perceive state-of-the-art context-aware conversational AI assistants. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel methods for evaluating conversational assistants. You will analyze and understand user experiences by leveraging Amazon’s heterogeneous data sources and build evaluation models using machine learning methods. Key job responsibilities - Design, build, test and release predictive ML models using LLMs - Ensure data quality throughout all stages of acquisition and processing, including such areas as data sourcing/collection, ground truth generation, normalization, and transformation. - Collaborate with colleagues from science, engineering and business backgrounds. - Present proposals and results to partner teams in a clear manner backed by data and coupled with actionable conclusions - Work with engineers to develop efficient data querying and inference infrastructure for both offline and online use cases About the team Central Analytics and Research Science (CARS) is an analytics, software, and science team within Amazon's Conversational Assistant Services (CAS) organization. Our mission is to provide an end-to-end understanding of how customers perceive the assistants they interact with – from the metrics themselves to software applications to deep dive on those metrics – allowing assistant developers to improve their services. Learn more about Amazon’s approach to customer-obsessed science on the Amazon Science website, which features the latest news and research from scientists across the company. For the latest updates, subscribe to the monthly newsletter, and follow the @AmazonScience handle and #AmazonScience hashtag on LinkedIn, Twitter, Facebook, Instagram, and YouTube.
US, WA, Seattle
AWS Industry Products (IP) is a new AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for an Applied Scientist who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations domains. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems. Key job responsibilities Using your in-depth expertise in machine learning and generative AI, you will deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon.
DE, Berlin
The Community Feedback organization powers customer-generated features and insights that help customers use the wisdom of the community to make unregretted shopping decisions. Today our features include Customer Reviews, Content Moderation, and Customer Q&A (Ask), however our mission and charter are broader than these features. We are focused on building a rewarding and engaging experience for contributors to share their feedback, and providing shoppers with trusted insights based on this feedback to inform their shopping decision The Community Data & Science team is looking for a passionate, talented, and inventive Senior Applied Scientist with a background in AI, Gen AI, Machine Learning, and NLP to help build LLM solutions for Community Feedback. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team and are ready to make a lasting impact on the future of AI-powered shopping, we invite you to join us on this exciting journey to reshape shopping. Please visit https://www.amazon.science for more information. Key job responsibilities - As a Senior Applied Scientist, you will work on state-of-the-art technologies that will result in published papers. - However, you will not only theorize about the algorithms but also have the opportunity to implement them and see how they perform in the field. - Our team works on a variety of projects, including state-of-the-art generative AI, LLM fine-tuning, alignment, prompt engineering, and benchmarking solutions. - You will be also mentoring junior scientists on the team. About the team The Community Data & Science team focusses on analyzing, understanding, structuring and presenting customer-generated content (in the form of ratings, text, images and videos) to help customers use the wisdom of the community to make unregretted purchase decisions. We build and own ML models that help with i) shaping the community content corpus both in terms of quantity and quality, ii) extracting insights from the content and iii) presenting the content and insights to shoppers to eventually influence purchase decisions. Today, our ML models support experiences like content solicitation, submission, moderation, ranking, and summarization.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Within Sponsored Products, the Bidding team is responsible for defining and delivering a collection of advertising products around bid controls (dynamic bidding, bid recommendations, etc.) that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, WA, Seattle
Ever wonder how you can keep the world’s largest selection also the world’s safest and legally compliant selection? Then come join a team with the charter to monitor and classify the billions of items in the Amazon catalog to ensure compliance with various legal regulations. The Classification and Policy Platform (CPP) team is looking for Applied Scientists to build technology to automatically monitor the billions of products on the Amazon platform. The software and processes built by this team are a critical component of building a catalog that our customers trust. As an Applied Scientist on the CPP team, you will train LLMs to solve customer problems, distill knowledge into optimized inference artifacts, and collaborate cross-functionally to deliver impactful solutions. This role offers the opportunity to push the boundaries of LLM capabilities and drive tangible value for our customers. The ideal candidate should possess exceptional technical skills, a startup-driven mindset, outstanding communication abilities to join our dynamic team. We believe that innovation is key to being the most customer-centric company. We innovate, publish, teach, and set strategy, while using Amazon's "working backwards" method to serve our customers.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun. Amazon Robotics is seeking students to join us for a 5-6 month internship (full-time, 40 hours per week) as Data Science Co-op. Please note that by applying to this role you would be considered for Data Scientist spring co-op and fall co-op roles on various Amazon Robotics teams. The internship/co-op project(s) and location are determined by the team the student will be working on. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics About the team Amazon empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.
US, CA, Santa Clara
Come join the AWS AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. We are located in the USA (Seattle, Pasadena, Bay Area). About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
Want to work on one of the highest priorities across Amazon Ads? This is your chance to help build a billion dollar business, innovate on a new product space, and have a positive impact on millions of views while working with industry-leading technologies. The Ad Catalyst team in Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital advertising solutions to over a million advertisers with the goal of helping our our hundreds of millions customers find and discover anything they want to buy. We start with the customer and work backwards in everything we do, including advertising. Our team owns researching, evaluating, ranking and serving personalized recommendation to each of our 1+ million advertisers using state of the art machine learning techniques ( e.g., deep learning, deep-reinforcement learning, causal modeling). Our team is placed centrally in the Advertising Experience organization which owns the advertising console, this provides us full-stack ownership giving scientists the satisfaction of seeing their work directly power advertiser experiences with measurable outcomes. If you’re interested in joining a rapidly growing team working to build a unique, highly respected advertising group with a relentless focus on the customer, you’ve come to the right place. This is a unique opportunity to get in early and drive significant portions of the technical roadmap and shape the research agenda of a billion+ dollar business. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment through both strong personal delivery and the ability to develop partnerships with science teams across the org. This is a high visibility leadership position where you will be the first principal scientist in a 400+ people org. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities - Be a thought leader and forward thinker, anticipating obstacles to success, helping avoid common failure modes, and holding us to a high standard of technical rigor and excellence in machine learning (ML). - Own and drive the most complex and strategic solutions across the business; responsible for many millions in revenue. - Own the dialogue with partner science teams - shape consensus in scientific research roadmap, modeling approaches evaluation and presentation of the science driven results to our advertisers. - Define evaluation methods and metrics that measure the effectiveness of advertising recommendations using a variety of science techniques (Randomized Control Trials, Causal Modeling, Reinforcement learning policy evaluation) - Research, build, and deploy innovative ML solutions; working across all technical disciplines. - Identify untapped, high-risk technical and scientific directions, and stimulate new research directions that you will deliver on. - Be responsible for communicating our ML innovations to the broader internal & external scientific communities. - Hire, mentor, and guide senior scientists. - Partner with engineering leaders to build efficient and scalable solutions. We are open to hiring candidates to work out of one of the following locations: New York, Seattle
US, CA, Santa Clara
AWS AI is looking for passionate, talented, and inventive Research Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! We are seeking a highly accomplished and visionary Data Science professional to join our team, leading our data science strategy for the Media Planning Science program. In this role, you will collaborate closely with business leaders, stakeholders, and cross-functional teams to drive the success of the program through data-driven solutions. You will be responsible for shaping the data science roadmap fostering a culture of data-driven decision-making, and delivering significant business impact through advanced analytics and cutting-edge data science methodologies. Key job responsibilities As a Data Scientist on this team, you will: 1. Develop and drive the data science strategy for the Media Planning Science program, aligning it with the program's objectives and overall business goals. 2. Identify high-impact opportunities within the program and lead the ideation, planning, and execution of data science initiatives to address them. 3. Solve real-world problems by getting and analyzing large amounts of data, diving deep to identify business insights and opportunities, design simulations and experiments, developing statistical and ML models by tailoring to business needs, and collaborating with Scientists, Engineers, BIE's, and Product Managers. 4. Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data 5. Apply statistical and machine learning knowledge to specific business problems and data. 6. Build decision-making models and propose solution for the business problem you define. 7. Formalize assumptions about how our systems are expected to work, create statistical definition of the outlier, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. 8. Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team The Media Planning Science team builds and deploys models that provide insights and recommendations for media planning. Our mission is to assist advertisers in activating plans that align with their goals. Our insights and recommendations leverage heuristic and machine learning models to simplify the complex tasks of forecasting, outcome prediction, budget planning, optimized audience selection and measurements for media planners. We integrate our insights into user interfaces and programmatic integrations via APIs, ensuring reliable data, timely delivery, and optimal advertising outcomes for our advertisers.