Watch Amazon's mobile robots in action

How Amazon robots navigate congestion

Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

Each day, Amazon receives millions of orders. For each one, it makes a promise about when those items will show up on customers’ doorsteps.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

Amazon’s fleet of more than half a million mobile robots is critical to meeting those deadlines. The typical Amazon fulfillment center has four floors, each several football fields in size, and 4,000 or more robots shuttling products to stations where associates select them for shipment. In some buildings, additional robots then sort those outgoing packages by zip code for delivery.

For Amazon Robotics researchers, the sheer number of robots requires some creative problem solving.

“Imagine that we want our robots to pick up and deliver as many items as possible during a set amount of time,” said Michael Wolf, a principal applied scientist at Amazon Robotics AI. “At first, we can increase throughput by adding more robots. But at a certain point, their sheer numbers start to cause congestion. The robots can interfere with each other and decrease the efficiency of the overall system.”

This is a challenge few organizations face. Amazon, because of its enormous scale and the need to delight its customers, has become a leader in utilizing robots while its science teams work to keep congestion from impacting operational efficiency.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Joey Durham, a senior manager of research and science for Amazon Robotics, has helped lead the way. He joined Kiva Systems, a pioneer in warehouse robots, just before Amazon acquired the company 10 years ago. At the time, the average Kiva customer used about 250 robots. Amazon’s vision was to push far beyond those boundaries.

“When we first started looking at it, we thought it would take more than 8,000 robots to keep an Amazon fulfillment center running,” Durham said. “There just was not enough room for them all. That’s when we said, ‘Wow, we really have to solve the congestion problem.’ And we have addressed it — we’ve gotten dramatically more efficient.”

While Amazon’s answers to the congestion challenge have evolved over time, its first solutions did not involve traffic management. Instead, it was all about helping robots make better decisions.

Understanding the floor

To understand why better decisions matter, consider how Amazon’s large rectangular fulfillment centers are laid out. Robots and four-sided storage shelves called pods, that contain millions of individual products, sit in the middle.

Pods containing products flow from the middle to stations spaced around the perimeter, where associates select the items needed to fulfill each order and place them in bins. When a particular pod is needed, a robot slips under the 1,000-lb pod, lifts it off the floor, and carries it to the station. This is the opposite of traditional warehouses, where workers travel miles of aisles daily, picking products one by one. By eliminating those trips, Amazon dramatically boosts productivity.

Related content
An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

When Amazon receives an order, that order is assigned to the facility or facilities best able to fulfill it. A cloud-based computer system then decides which pod to use for each item in an order and which orders to process together to optimize the items delivered per pod. Like carpooling, picking more items per pod will reduce the amount of congestion that the robots will experience.

There are tradeoffs along the way. Amazon wants to store the maximum amount of goods on the floor. At the same time, it wants to move products to stations as efficiently as possible. “The challenge we’re always facing is how to increase storage space while still giving the robots enough room to maneuver,” Durham said.

Finding the flow

While good work allocation and route decisions smooth traffic flow and reduce unnecessary trips, managing the actual movement of robots is also important. To simplify the task, Amazon’s cloud computing service creates the virtual equivalent of a map of a city grid, on which robots can travel ‘north-south’ or ‘east-west’. Once a robot picks up a pod, the computing service creates a route to its final destination.

Watch Amazon robots navigate
To optimize overall system efficiency and ensure the robots do not interfere with one another, Amazon has developed algorithms to coordinate robotic motion

To optimize overall system efficiency and ensure the robots do not interfere with one another, Amazon has developed algorithms to coordinate robotic motion. The major challenge is creating plans fast enough to stay ahead of all the moving robots. One method the team uses is to compute “social rules” to guide the overall flow of robots to avoid traffic snarls, but also consider whether a robot should be allowed to break those rules to take a short cut and get to its destination more efficiently.

There are literally trillions of possibilities, and we have to solve these problems in real time.
Michael Wolf

Yet the dynamic nature of the fulfillment center means new orders arrive constantly, associates sign in and out of stations, and robots halt when they sense unexpected problems. Couple that with the number of pods and robots on the floor and Amazon’s scale, and you begin to realize the scope of the challenge. “There are literally trillions of possibilities, and we have to solve these problems in real time,” Wolf said.

Instead, the system seeks to constantly adapt the plan to conditions on the floor. “That reaction is more important to us than a globally optimized schedule,” Durham explained. “Ideally, we’d want both. So, we have to find this delicate balance between making sure the system is reactive and as optimal as possible.”

Going down the chutes

Once orders are packed and labeled, they go to the sortation center. There, associates and robotic arms pull packages off a conveyor, scan a bar code for destination information, and put each package on a small robot. The robot then weaves its way around an array of holes in the floor, each one representing a different group of zip codes. When it comes to the right one, it drops the package down the chute that goes to the loading dock below, where it goes out for delivery. A typical sortation floor has several hundred chutes and one thousand robots carrying packages to them.

Sortation, however, offers fewer options for optimization than fulfillment. In sortation, randomly jumbled packages roll down the conveyor and the system must deal with whatever it finds when the packages arrive.

So, Amazon Robotics researchers set about designing better traffic management patterns. Computers in the cloud plan a path for each robot. As on the fulfillment floor, the sortation center defines virtual streets that govern in which direction a robot can move — but here the streets are wider.

This gives rise to new problems and new algorithms to solve them. For example, what happens when several robots meet at a multi-lane intersection where some want to go straight or turn across oncoming traffic? To create a more optimal traffic flow, Amazon Robotics researchers are developing a new multi-agent planning system that will consider more robots at a time.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

But even the state-of-the-art in multi-agent planning cannot plan fast enough for the thousand or more robots in an Amazon building. So, Durham’s teams are inventing “hybrid” solutions that combine fast planning for single robots with coordination techniques inspired by state-of-the-art methods. The goal, Durham said, is to find and resolve conflicts before they occur.

“Our goal is to create a plan that evolves,” Durham said. “We do not have the luxury to sit down at time-zero and come up with a perfect plan to get our robots moving. Instead, we start with the plan that is already up and running and that we resolved a second ago. Then, we update it with what has changed, what has gone wrong, and what new things have appeared and then reprioritize what robots should do.”

Building on increments

Multi-agent planning will be a major step forward, but Amazon has many more concepts in the works. Amazon has unparalleled experience with robots and its researchers want to use machine learning to better address common challenges. Then they can incorporate those learned policies and heuristics into an even better multi-agent system.

“As those robots are moving and looking around, they could assess what they see and look up the best policy in the cloud for dealing with it,” Wolf said. “It would save us the cost of duplicating those policies for every robot and it makes updating policies around the world easier.”

Amazon researchers are also developing “learning algorithms that allow the system to predict where patches of congestion will appear on the floor in the future, and also when they will disappear,” says Wolf, “This ability to anticipate makes planning even more knowledgeable.”

Amazon hopes to build on this work by reaching out to academics, who are exploring new concepts that are not yet ready for commercialization.

Related content
The collaboration will support research, education, and outreach efforts in areas of mutual interest, beginning with artificial intelligence and robotics.

In October, the company announced a collaboration with Massachusetts Institute of Technology to create a Science Hub for robotics and artificial intelligence. There, Amazon is working with professor Cathy Wu, who uses machine learning to study the traffic flow of autonomous and human-driven cars in cities, and professor Cynthia Barnhart, who is an expert in operations research problems such as how to allocate robots to tasks.

They are exploring how to use machine learning to make robot fleets avoid congestion. Scientists at Amazon hope to leverage academic research to develop better algorithms for predicting congestion before it even appears and planning algorithms to avoid it.

The ultimate goal is to continue to extend technology in new directions. Machine learning-derived polices and better prediction and planning algorithms will enable Amazon to both ramp up the number of robots in its sortation and fulfillment centers and safely increase the flow of traffic. This will help customers to get their packages even faster.

That is only the beginning. Despite enormous strides, robotics remains a young and rapidly evolving science. Amazon, for example, funds multiple projects at several universities that range from machine learning and shared autonomy to hardware redesign and human-robot interaction. “We have an opportunity not just to use science improve products for our customers, but to support robotics researchers as a public good," said Jeremy Wyatt, senior applied science manager.

Yet Amazon also offers something more, something that comes only with scale.

“Amazon has the most challenging, full-scale, real-world problems I see in industry,” Wolf said. “If you want to have an impact on the real world, it is the place to be in robotics research. It gives researchers an opportunity to see our solutions deployed on hundreds of thousands of robots. And, because our operations are always evolving, there’s always an exciting new challenge to solve on the horizon.”

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, NY, New York
Join us in a historic endeavor to make Generative AI accessible to the world with breakthrough research! The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists drives the innovation that enables external and internal SageMaker customers to train their next generation models on both GPU and Trainium instances. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.