Amazon Scout making a delivery in a residential neighborhood.
Amazon Scout delivery robots are slowly shuttling around four areas in the United States: Snohomish County, Wash.; Irvine, Calif.; Franklin, Tenn.; and Atlanta, Georgia. Amazon scientists are working to help the fully autonomous delivery robots traverse a nearly infinite range of variables.

How Amazon scientists are helping the Scout delivery device find a path to success

Navigation, perception, simulation — three key components to giving Amazon Scout true independence.

Introduced in January 2019, Amazon’s Scout delivery robot now is slowly shuttling around four areas in the United States: Snohomish County, Wash.; Irvine, Calif.; Franklin, Tenn.; and Atlanta, Georgia. The electrically powered, cooler-sized delivery system is designed to find its way along sidewalks and navigate around pets, people, and a wide variety of other things it encounters while delivering packages to customers’ homes.

To deploy a fleet of fully autonomous delivery robots, Scout must manage changing weather conditions, variations in terrain, unexpected obstacles — a nearly infinite range of variables.

To better understand how Amazon Scout is working to meet those challenges, Amazon Science recently spoke with three scientists who are currently — or were formerly — professors in the robotics field, and now are working on critical components of the service. They are focusing on giving Amazon Scout the tools it needs to navigate to customers by helping the delivery robot see and understand what’s going on around it and giving it an accurate picture of the physical world.

Navigation: Where should Scout go?

Paul Reverdy, an applied scientist, is a relative newcomer to the Scout project, joining Amazon in July 2020. His background in helping automated systems such as robots work with people is extensive, including earning his PhD from Princeton University, his postdoctoral fellowship at the University of Pennsylvania, and his tenure as an assistant professor in aerospace and mechanical engineering at the University of Arizona.

Paul Reverdy
Paul Reverdy
Lamont W. Abrams Jr.

As a key contributor to Scout’s ability to find its way around a neighborhood, Reverdy has a big task. Traditional methods, such as relying on GPS signals, are not adequate to guide Scout, he says. They simply don’t offer enough detail nor are they available all the time.

“Scout has to make a lot of decisions,” Reverdy said. “Some are pretty high level, such as deciding whether it should cross a street or not. Then there are very discrete decisions it must make, such as ‘Can I get through the gap between the hedge and the trash can?’”

That’s where navigation plays a role. Rather than sending a device into territory it doesn’t fully comprehend, Reverdy is creating detailed maps of the world Scout travels within to make sure Scout has the information it needs to plan and react to the world.

“There might be bumps on a sidewalk, or it might be raining, and the sidewalk looks different,” says Reverdy. “Or it could be a higher-level decision: ‘OK, the sidewalk is blocked. Do I try to maneuver into the street? Do I try to navigate around the obstacle?’”

Scout also needs to figure these things out with a modest sensor array. “We have real-world constraints,” says Reverdy. “We need to be intelligent with our sensor data to make sure we perform.”

For Reverdy, the work with Amazon has been an interesting contrast to academia. “The thing that’s really different is working on large-scale software problems,” he says. “In academia you’re often working on your own. At Amazon, things are much more collaborative. Plus, the scale of problems we can look at is substantially larger.”

Perception: Giving Scout a view of the world

Another scientist playing a key role in giving Scout true independence is Hamed Pirsiavash, an Amazon visiting scientist, an assistant professor at the University of Maryland Baltimore County who works on computer vision and machine learning. His job is to help Scout see the world around it and understand what it is seeing or sensing.

Hamed Pirsiavash
Hamed Pirsiavash

“Scout needs to understand what a drivable area is, or what it means when it comes to a stoplight,” says Pirsiavash. “The goal is similar to self-driving cars, with the main difference that Scout mostly travels slowly on sidewalks.”

In some ways, that makes it easier for Scout to understand its environment. In other ways, the task of traversing neighborhood sidewalks is more difficult. Roads are somewhat more predictable — after all, they’re designed for cars. But sidewalks have more varied uses. “It’s a different environment from a street” says Pirsiavash, “as we’re likely to encounter a variety of obstacles, from lawn and garden tools and skateboard ramps, to outdoor furniture and toys.”

What makes Scout possible today are the big advances in computer vision and machine learning that have occurred in the past decade. “The field is advancing every day,” says Pirsiavash. “With large-scale data sets and vast computation now available, we’re able to build a robot that understands the world in a much more sophisticated way.”

For Pirsiavash, Amazon offers a chance to work on real-world, applied-science problems together with more theoretical academic challenges.  “Scout has to manage some challenging situations,” Pirsiavash says. “We’ve had cases where a Scout has encountered a basketball hoop that fell across the sidewalk. And of course, people always put their trash bins in different places, and Scout must understand what is happening.”

“I’m really enjoying the work. It’s great to see the results of our work in the field and see how it can benefit people.”

Simulation: Building a virtual world for Scout

Airlines train pilots in simulators so they can learn in a digital jetliner before taking the helm of a real aircraft. Giving Scout the tools it needs to succeed is no different: Detailed simulators give Scout the chance to test its skills in a digital environment.

Benjamin Kunsberg calls it a “digital sandbox” for the robot. “We can give Scout a world with tremendous detail, down to individual blades of grass,” he says.

Benjamin Kunsberg
Benjamin Kunsberg

Kunsberg is an Amazon applied scientist who joined the Scout team in 2019, following four years as an assistant professor of applied mathematics at Brown University in Rhode Island. Previously, he earned his PhD in applied mathematics from Yale University, and a master’s degree in mathematics from Stanford University.

Creating a digital world is a challenging task. It must be accurate enough for Scout to really get a sense of the world, and even small shifts in daylight can have an impact on that. “Small differences not taken into account can make a big difference,” says Kunsberg. “There’s dust in the air, or sun glare.”

In a way, it’s a problem from the movie, “The Matrix”. There, computers designed a virtual world. But how did they know if they got it right? “For some objects, you have no idea how accurate your digital simulation is,” says Kunsberg. “You have to work very hard to come up with benchmarks.”

In some cases, the simulation includes digital scenery similar to a video game. Engineers can add October leaves to a sidewalk, for instance, so Scout can learn that things have changed compared to April. In other cases, the Scout team uses actual photography for training, with team members then outlining and identifying key features to guide the robot’s decisions. That’s slow, but accurate, and can be combined with fully digital simulation to create an accurate view of the world.

Amazon Scout could one day be traversing your neighborhood.

Once that world is designed, Scout needs to be trained to understand it. That’s accomplished in part using neural networks — computer systems that recognize relationships among data through a process that, in part, mimics the human brain an approach not available 10 years ago.

Kunsberg has enjoyed the jump from academia to industry.

“This project involves a lot of ideas I had already been thinking about.

“I’ve been really impressed by the graphical engineers and software developers on our team. There’s really no equal in academia.”

What’s next for Scout?

It’s still Day One for Amazon Scout. The team is excited about the positive feedback from customers and results from field tests. The team expects to apply its learnings to keep moving forward on this new delivery system and on Amazon’s path to net zero carbon by 2040.

You can find out more about the team and available jobs here.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist; to support the development and implementation of Generative AI (GenAI) algorithms and models for supervised fine-tuning, and advance the state of the art with Large Language Models (LLMs), As an Applied Scientist, you will play a critical role in supporting the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA Amazon is seeking an innovative and high-judgement Senior Applied Scientist to join the Privacy Engineering team in the Amazon Privacy Services org. We own products and programs that deliver technical innovation for ensuring compliance with high-impact, urgent regulation across Amazon services worldwide. The Senior Applied Scientist will contribute to the strategic direction for Amazon’s privacy practices while building/owning the compliance approach for individual regulations such as General Data Protection Regulation (GDPR), DMA, Quebec 25 etc. This will require helping to frame, and participating in, high judgment debates and decision making across senior business, technology, legal, and public policy leaders. A great candidate will have a unique combination of experience with innovative data governance technology, high judgement in system architecture decisions and ability to set detailed technical design from ambiguous compliance requirements. You will drive foundational, cross-service decisions, set technical requirements, oversee technical design, and have end to end accountability for delivering technical changes across dozens of different systems. You will have high engagement with WW senior leadership via quarterly reviews, annual organizational planning, and s-team goal updates. Key job responsibilities * Develop information retrieval benchmarks related to code analysis and invent algorithms to optimize identification of privacy requirements and controls. * Develop semantic and syntactic code analysis tools to assess privacy implementations within application code, and automatic code replacement tools to enhance privacy implementations. * Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence for privacy compliance. * Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. A day in the life Amazon Privacy Services own products and programs that deliver technical innovation for ensuring Privacy Amazon services worldwide. We are hiring an innovative and high-judgement Senior Applied Scientist to develop AI solutions for builders across Amazon’s consumer and digital businesses including but not limited to Amazon.com, Amazon Ads, Amazon Go, Prime Video, Devices and more. Our ideal candidate is creative, has excellent problem-solving skills, a solid understanding of computer science fundamentals, deep learning and a customer-focused mindset. The Senior Scientist will serve as the resident expert on the development of AI agents for privacy. They build on their experiences to develop LLMs to develop AI implementations across privacy workflows. They will have responsibilities to mentor junior scientists and engineers develop AI skills. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system