Amazon Scout making a delivery in a residential neighborhood.
Amazon Scout delivery robots are slowly shuttling around four areas in the United States: Snohomish County, Wash.; Irvine, Calif.; Franklin, Tenn.; and Atlanta, Georgia. Amazon scientists are working to help the fully autonomous delivery robots traverse a nearly infinite range of variables.

How Amazon scientists are helping the Scout delivery device find a path to success

Navigation, perception, simulation — three key components to giving Amazon Scout true independence.

Introduced in January 2019, Amazon’s Scout delivery robot now is slowly shuttling around four areas in the United States: Snohomish County, Wash.; Irvine, Calif.; Franklin, Tenn.; and Atlanta, Georgia. The electrically powered, cooler-sized delivery system is designed to find its way along sidewalks and navigate around pets, people, and a wide variety of other things it encounters while delivering packages to customers’ homes.

To deploy a fleet of fully autonomous delivery robots, Scout must manage changing weather conditions, variations in terrain, unexpected obstacles — a nearly infinite range of variables.

To better understand how Amazon Scout is working to meet those challenges, Amazon Science recently spoke with three scientists who are currently — or were formerly — professors in the robotics field, and now are working on critical components of the service. They are focusing on giving Amazon Scout the tools it needs to navigate to customers by helping the delivery robot see and understand what’s going on around it and giving it an accurate picture of the physical world.

Navigation: Where should Scout go?

Paul Reverdy, an applied scientist, is a relative newcomer to the Scout project, joining Amazon in July 2020. His background in helping automated systems such as robots work with people is extensive, including earning his PhD from Princeton University, his postdoctoral fellowship at the University of Pennsylvania, and his tenure as an assistant professor in aerospace and mechanical engineering at the University of Arizona.

Paul Reverdy
Paul Reverdy
Lamont W. Abrams Jr.

As a key contributor to Scout’s ability to find its way around a neighborhood, Reverdy has a big task. Traditional methods, such as relying on GPS signals, are not adequate to guide Scout, he says. They simply don’t offer enough detail nor are they available all the time.

“Scout has to make a lot of decisions,” Reverdy said. “Some are pretty high level, such as deciding whether it should cross a street or not. Then there are very discrete decisions it must make, such as ‘Can I get through the gap between the hedge and the trash can?’”

That’s where navigation plays a role. Rather than sending a device into territory it doesn’t fully comprehend, Reverdy is creating detailed maps of the world Scout travels within to make sure Scout has the information it needs to plan and react to the world.

“There might be bumps on a sidewalk, or it might be raining, and the sidewalk looks different,” says Reverdy. “Or it could be a higher-level decision: ‘OK, the sidewalk is blocked. Do I try to maneuver into the street? Do I try to navigate around the obstacle?’”

Scout also needs to figure these things out with a modest sensor array. “We have real-world constraints,” says Reverdy. “We need to be intelligent with our sensor data to make sure we perform.”

For Reverdy, the work with Amazon has been an interesting contrast to academia. “The thing that’s really different is working on large-scale software problems,” he says. “In academia you’re often working on your own. At Amazon, things are much more collaborative. Plus, the scale of problems we can look at is substantially larger.”

Perception: Giving Scout a view of the world

Another scientist playing a key role in giving Scout true independence is Hamed Pirsiavash, an Amazon visiting scientist, an assistant professor at the University of Maryland Baltimore County who works on computer vision and machine learning. His job is to help Scout see the world around it and understand what it is seeing or sensing.

Hamed Pirsiavash
Hamed Pirsiavash

“Scout needs to understand what a drivable area is, or what it means when it comes to a stoplight,” says Pirsiavash. “The goal is similar to self-driving cars, with the main difference that Scout mostly travels slowly on sidewalks.”

In some ways, that makes it easier for Scout to understand its environment. In other ways, the task of traversing neighborhood sidewalks is more difficult. Roads are somewhat more predictable — after all, they’re designed for cars. But sidewalks have more varied uses. “It’s a different environment from a street” says Pirsiavash, “as we’re likely to encounter a variety of obstacles, from lawn and garden tools and skateboard ramps, to outdoor furniture and toys.”

What makes Scout possible today are the big advances in computer vision and machine learning that have occurred in the past decade. “The field is advancing every day,” says Pirsiavash. “With large-scale data sets and vast computation now available, we’re able to build a robot that understands the world in a much more sophisticated way.”

For Pirsiavash, Amazon offers a chance to work on real-world, applied-science problems together with more theoretical academic challenges.  “Scout has to manage some challenging situations,” Pirsiavash says. “We’ve had cases where a Scout has encountered a basketball hoop that fell across the sidewalk. And of course, people always put their trash bins in different places, and Scout must understand what is happening.”

“I’m really enjoying the work. It’s great to see the results of our work in the field and see how it can benefit people.”

Simulation: Building a virtual world for Scout

Airlines train pilots in simulators so they can learn in a digital jetliner before taking the helm of a real aircraft. Giving Scout the tools it needs to succeed is no different: Detailed simulators give Scout the chance to test its skills in a digital environment.

Benjamin Kunsberg calls it a “digital sandbox” for the robot. “We can give Scout a world with tremendous detail, down to individual blades of grass,” he says.

Benjamin Kunsberg
Benjamin Kunsberg

Kunsberg is an Amazon applied scientist who joined the Scout team in 2019, following four years as an assistant professor of applied mathematics at Brown University in Rhode Island. Previously, he earned his PhD in applied mathematics from Yale University, and a master’s degree in mathematics from Stanford University.

Creating a digital world is a challenging task. It must be accurate enough for Scout to really get a sense of the world, and even small shifts in daylight can have an impact on that. “Small differences not taken into account can make a big difference,” says Kunsberg. “There’s dust in the air, or sun glare.”

In a way, it’s a problem from the movie, “The Matrix”. There, computers designed a virtual world. But how did they know if they got it right? “For some objects, you have no idea how accurate your digital simulation is,” says Kunsberg. “You have to work very hard to come up with benchmarks.”

In some cases, the simulation includes digital scenery similar to a video game. Engineers can add October leaves to a sidewalk, for instance, so Scout can learn that things have changed compared to April. In other cases, the Scout team uses actual photography for training, with team members then outlining and identifying key features to guide the robot’s decisions. That’s slow, but accurate, and can be combined with fully digital simulation to create an accurate view of the world.

Amazon Scout could one day be traversing your neighborhood.

Once that world is designed, Scout needs to be trained to understand it. That’s accomplished in part using neural networks — computer systems that recognize relationships among data through a process that, in part, mimics the human brain an approach not available 10 years ago.

Kunsberg has enjoyed the jump from academia to industry.

“This project involves a lot of ideas I had already been thinking about.

“I’ve been really impressed by the graphical engineers and software developers on our team. There’s really no equal in academia.”

What’s next for Scout?

It’s still Day One for Amazon Scout. The team is excited about the positive feedback from customers and results from field tests. The team expects to apply its learnings to keep moving forward on this new delivery system and on Amazon’s path to net zero carbon by 2040.

You can find out more about the team and available jobs here.

Research areas

Related content

  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
  • October 15, 2025
    The collaboration will advance research in generative AI, robotics, natural language processing and cloud computing while fostering innovation in foundational and emerging technologies.
JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with content on Prime Video. Key job responsibilities In this role you will work closely with business stakeholders and other data scientists to develop predictive models, forecast key business metrics, dive deep on the customer and content related factors that drive engagement and create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, build with AWS to deploy machine learning and forecasting models while making a significant impact on how Prime Video makes content investment and selection decisions.
IN, KA, Bengaluru
Amazon’s Last Mile Team is looking for a passionate individual with strong machine learning and GenAI engineering skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization, fleet planning. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. Optimizing the last mile delivery requires deep understanding of transportation, supply chain management, pricing strategies and forecasting, and the GenAI approaches for a diverse range of problems to solve. Only through innovative and strategic thinking, we will make the right capital investments in technology, assets and infrastructures that allows for long-term success. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing solutions to better manage and optimize delivery capacity in the last mile network. The successful candidate should have solid research experience in one or more technical areas of Machine Learning or Large Language Models. These positions will focus on identifying and analyzing opportunities to improve existing algorithms and also on optimizing the system policies across the management of external delivery service providers and internal planning strategies. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. To support their proposals, candidates should be able to independently mine and analyze data, and be able to use any necessary programming and statistical analysis software to do so. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.