How AWS’s Automated Reasoning Group helps make AWS and other Amazon products more secure

Amazon scientists are on the cutting edge of using math-based logic to provide better network security, access management, and greater reliability.

Data breaches have seemingly become part of everyday digital life. In the past few years many large financial services firms, among others, have been hit with data breaches. In fact, the research firm Risk Based Security reports that in the first nine months of 2019, medical services, retailers, and government agencies suffered 5,183 data breaches, opening 7.9 billion records to theft or other nefarious purposes.

Security is the top priority for AWS, the world’s most comprehensive and broadly adopted cloud platform. In addition to an abundance of security resources and expert guidance, AWS has a (not so) secret weapon that helps protect the company and its customers—automated reasoning. Automated reasoning applications help detect against unauthorized access, improve network security, and ensure software compatibility.

Byron Cook
Byron Cook, ARG senior principal scientist

In response to the rapid scale of cloud growth, AWS invested in automated reasoning as a way to provide higher security assurance at scale. Five years ago, Byron Cook, senior principal scientist, established the Automated Reasoning Group (ARG) within AWS. Considered by many as the strongest team in its field, ARG began to create and implement automated reasoning tools to secure AWS’s own infrastructure and services, as well as those of AWS customers.

Automated reasoning is a sub-field of artificial intelligence; it applies mathematical analysis to better understand complex computer systems or large code bases. The technique takes a system and a question you might have about the system—like “is the system memory safe?”—and reformulates the question as a set of mathematical properties.

While AI is very good at sorting unstructured data – picking out photos of cats from thousands of animal photos, for instance – automated reasoning can be used for more abstract and less clearly defined tasks, such as who should or should not have access to a certain set of data.

Data security is certainly one of the top three pain points for the tech industry...It has been a priority of ours to put features in place to make sure our AWS customers’ resource policies are correctly configured.
Byron Cook, ARG senior principal scientist

In software development, automated reasoning replaces laborious and possible flawed testing with a rigorous mathematical proof that the software will function properly and securely, such as ensuring that data structures are correct.

“Automated reasoning is a way to quickly analyze infinite or very large-scale state spaces,” says Cook. “It does so by using high-school algebra to push symbols around.”

In concept, automated reasoning dates to the 19th century and the work of George Boole, whose work on Boolean Logic – with its variables of true and false – laid the foundation for all modern programming languages.

“Automated reasoning doesn’t look at data, but instead looks for things where we know there is a definite set of rules,” adds Neha Rungta, a senior principal applied scientist and former NASA research scientist. "It asks, ‘Given our specifications, is there a case where something unexpected can happen?’

Neha Rungta
Neha Rungta works on formal verification techniques for cloud security within the Amazon Web Services Automated Reasoning Group.

“It doesn’t need data, or logs, or who has accessed things in the past. It just looks at your configurations [and] your policies. Because of the rules we’ve encoded, it can very quickly tell you who outside your account has access.”

In just a few years, the team’s automated reasoning tools have been applied to a broad range of challenges in networking, access control permissions, automated compliance verification, and analyzing code bases for some of AWS’s most prominent services. Most recently, ARG released a new service capability called IAM Access Analyzer. Access Analyzer is a capability of AWS IAM, and makes it easier for customers to spot holes in their policies that would grant overly broad access to their resources or data. In turn, security teams use these findings to determine whether this introduces unintended risk.

For example, policies may prohibit engineers from accessing a company’s key financial information, or financial people from seeing engineers’ work. IAM Access Analyzer applies logic and mathematical inference to determine all possible access paths allowed by a resource policy. Once the policy is written, IAM Access Analyzer monitors data pathways without human intervention.

Automated reasoning is also under the hood of Amazon S3, providing industry-leading security to Amazon’s popular cloud-storage service.

Says Cook: “Data security is certainly one of the top three pain points for the tech industry – a headline about a data breach in a newspaper is pretty much a daily occurrence. It has been a priority of ours to put features in place to make sure our AWS customers’ resource policies are correctly configured.”

Jim Christy
Jim Christy, software development manager, Prime Video

In addition to AWS, automated reasoning is being used across Amazon. Amazon Prime Video, for instance, uses the technology to check software updates to ensure the update doesn’t “break” a user’s device – a challenging task given all the devices now available.

”Our automated code review analyzer, Coastguard, uses automated reasoning to help third-party device manufacturers integrate Prime Video’s app correctly, before their devices hit stores or customer’s homes,” says Jim Christy, software development manager for Prime Video. “Getting the native client code right the first time is mission critical. Coastguard analyzes third-party integration code and detects when it has integrated incorrectly.”

Interest in automated reasoning solutions is increasing, especially now as more businesses transition workloads to the cloud as a result of the coronavirus pandemic.

“Automated reasoning helps our customers maintain security as they scale up,” says Reto Kramer, ARG director. “Lots of our users want to focus on their own business problems, not understanding the nuances of resources policies. With automated reasoning, we can give them cloud security that they’re comfortable with. It has really been a game-changer.”

Reto Kramer
Reto Kramer, ARG director

Since its inception, ARG has invested both in conferences focused on automated reasoning (FMCAD, PLDI, etc.) and specific professors that are pushing the edges of the field. By hiring a diverse class of interns annually, ARG has influenced the makeup of the field and built strong ties across the community. In 2018, ARG launched an initiative called Provable Security, a collective reference to the tools, features, thought leadership and community of experts in the automated reasoning field that had made their way to ARG.

“We have the dream team,” Cook says. “At AWS we have perhaps 50 PhD interns this year alone, with seven different teams doing work. We’ve hired some of the foremost practitioners in the world; individuals with backgrounds at NASA, and similar organizations."

Adds Rungta: “Automated reasoning has caused a shift in the mindset of our engineers. I get emails every day from engineers asking, ‘Can we use automated reasoning for my project?’ Its power is that you don’t have to test things and hope it works. If you run an automated reasoning tool your task will always be accomplished as specified.”

She predicts automated reasoning will have a huge impact on technology in the years to come, not only in fields such as cloud security, but in machine learning, threat detection, autonomous vehicles or aircraft, the Internet of Things, and much more.

“We’re just at the start of this journey,” says Rungta. “In a hyper-connected world, automated reasoning will be so integral that we won’t even be talking about what it is, just like nobody asks today, ‘What is the internet?’ It will just be part of the system.”

Want to learn more about automated reasoning? Watch this video from AWS re:Invent 2019 where Rungta explains more about how automated reasoning works.

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Sr. Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. If you’re interested in our particular philosophy of AI progress, reach out via AGI-SFLab-Jobs@amazon.com. Key job responsibilities - Develop cutting edge multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop cutting edge automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, CO, Denver
The Fulfillment by Amazon (FBA) enable third-party sellers to use Amazon’s world-class science and logistics infrastructure to supply and fulfill customers worldwide with unprecedented fast delivery promise to customer. In doing so, sellers spend more time building great products, delight customers and grow their business. The FBA team is looking for an Economist intern with strong causal inference and econometrics skills to join our cross-domain group of economists, applied scientists, research scientists, and data scientists. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.