A screenshot from SageMaker Clarify
SageMaker Clarify is integrated with Amazon SageMaker Data Wrangler, making it easier to identify bias during data preparation. You specify attributes of interest, such as gender or age, and SageMaker Clarify runs a set of algorithms to detect any presence of bias in those attributes.
Credit: AWS

How Clarify helps machine learning developers detect unintended bias

Learn why the science team behind Clarify turned to a concept from 1951 to address a modern complexity.

In his machine learning keynote at re:Invent on Tuesday, Swami Sivasubramanian, vice president of machine learning, Amazon Web Services (AWS), announced Amazon SageMaker Clarify, a new service that helps customers detect statistical bias in their data and machine learning models, and helps explain why their models are making specific predictions. Clarify saves developers time and effort by providing them the ability to better understand and explain how their machine learning models arrive at their predictions.

Understanding the predictions made by machine learning (ML) models and their potential biases remains a challenging and labor-intensive task that depends on the application, the dataset, and the specific model. We present Amazon SageMaker Clarify, an explainability feature for Amazon SageMaker that launched in December 2020, providing insights into data and ML models by identifying biases and explaining

Developers today contend with both increasingly large volumes of data, as well as more complex machine learning models. In order to detect bias in those complex models and data sets, developers must rely on open-source libraries replete with custom code recipes that are inconsistent across machine learning frameworks. This tedious approach requires a lot of manual effort and often arrives too late to correct unintended bias.

“If you care about this stuff, it's pretty much a roll-your-own situation right now,” said University of Pennsylvania computer science professor and Amazon Scholar Michael Kearns, who provided guidance to the team of scientists that developed SageMaker Clarify. “If you want to do some practical bias detection, you either need to implement it yourself or go to one of the open-source libraries, which vary in quality. They're frequently not well-maintained or documented. In many cases, it's just, ‘Here is the code we used to run our experiments for this academic paper, good luck.’”

SageMaker Clarify helps address the challenges of relying on multiple open-source libraries by offering robust, reliable code in an integrated, cloud-based framework.

Increasingly complex networks

The efficacy of machine learning models depends in part on understanding how much influence a given input has on the output.

AWS on Air 2020: AWS What’s Next ft. Amazon SageMaker Clarify

“A lending model for consumer loans might include credit history, employment history, and how long someone has lived at their current address,” Kearns explained. “It might also utilize variables that aren't specifically financial, such as demographic variables. One thing you might naturally want to know is which of these variables is more important in the model’s predictions, which may be used in lending decisions, and which are less important.”

With linear models, each variable is assigned some weight, positive or negative, and the overall decision is a sum of those weighted inputs. In those cases, the inputs with the bigger weights clearly have more influence on the output.

However, that approach falls short with neural networks or more complicated, non-linear models. “When you get to models like neural networks, it's no longer a simple matter of determining or measuring the influence of an input on the output,” Kearns said.

To help account for the growing complexity of modern machine learning models, the Amazon science team looked to the past — specifically to an idea from 1951.

Shapley values

The team wanted to design a solution to help machine learning pros be able to better explain their models’ decisions in the face of growing complexity. They found inspiration in a popular scientific method called Shapley values.

Shapley values were named in honor of Lloyd Shapley, who introduced the idea in 1951 and who won the Nobel Prize in Economics for it in 2012. The Shapley value approach, which is rooted in game theory, considers a wide range of possible inputs and outputs and offers “the average marginal contribution of a feature value across all possible coalitions”.  The comprehensive nature of the approach means it can help provide a framework for understanding the relative weight of a set of inputs, even across complex models and multiple inputs.

“SageMaker Clarify utilizes Shapley values to essentially take your model and run a number of experiments on it or on your data set,” Kearns said. “It then uses that to help come up with a visualization and quantification of which of those inputs is more or less important.”

Nor does it matter which kind of model a developer uses. “One of the nice things about this approach is it is model agnostic,” Kearns said. “It performs input-output experiments and gives you some sense of the relative importance of the different inputs to the output decision.”

The science team also worked to be certain SageMaker Clarify had a comprehensive view. They designed it so everyday developers and data scientists can detect bias across the entire machine learning workflow — including data preparation, training, and inference. SageMaker Clarify is able to achieve that comprehensive view, Kearns explained, because (again) it is model agnostic. “Each of these steps has been designed to avoid making strong assumptions about the type of model that the user is building.”

Bias detection and explainability

Model builders who learn that their models are making predictions that are strongly correlated to a specific input may find those predictions fall short of their definition of fairness. Kearns offered the example of a lending company that discovers its model’s predictions are skewed. “That company will want to understand why its model is making predictions that might lead to decisions to give loans at a lower rate to group A than to group B, even if they're equally credit worthy.”

SageMaker Clarify can examine tabular data and help the modelers spot where gaps might exist. “This company would upload a spreadsheet of data showing who they gave loans to, what they knew about them, et cetera,” Kearns said. “What the data bias detection part does is say, ‘For these columns, there may be over or underrepresentation of certain features, which could lead to a discriminatory outcome if not addressed.’”

A screenshot from SageMaker Clarify
SageMaker Clarify is integrated with SageMaker Model Monitor, enabling you to configure alerting systems like Amazon CloudWatch to notify you if your model exceeds certain bias metric thresholds. 
Credit: AWS

That can be influenced by a number of factors, including simply lacking the correct data to build accurate predictions. For example, SageMaker Clarify can indicate whether modelers have enough data on certain groups of applicants to expect an accurate prediction. The metrics provided by SageMaker Clarify can then be used to correct unintended bias in machine learning models, and automatically monitor model predictions in production to help ensure they are not trending toward biased outcomes.

Future applications

The SageMaker Clarify science team is already looking to the future.

Their research areas include algorithmic fairness and machine learning, as well as explainable AI. Team members have published widely in the academic literature on these topics, and worked hard in the development of SageMaker Clarify to balance the science of fairness with engineering solutions and practical product design. Their approaches are both statistical and causal, and focus not only on bias measurement in trained models, but also bias mitigation. It is that last part that has Kearns particularly excited about the future.

“The ability to not just identify problems in your models, but also have the tools to train them in a different way would go a long way toward mitigating that bias,” he said. “It’s good to know that you have a problem, but it's even better to have a solution to your problem.”

Best practices

The notions of bias and fairness are highly application dependent and the choice of the attributes for which bias is to be measured, as well as the choice of the bias metrics, may need to be guided by social, legal, and other non-technical considerations,” said principal applied scientist Krishnaram Kenthapadi, who led the scientific effort behind SageMaker Clarify. “For successful adoption of fairness-aware machine learning and explainable AI approaches in practice, it’s important to build consensus and achieve collaboration across key stakeholders such as product, policy, legal, engineering, and AI/ML teams, as well as end users and communities,” he said. “Further, it’s good to take into account fairness and explainability considerations during each stage of the ML lifecycle, for example, Problem Formation, Dataset Construction, Algorithm Selection, Model Training Process, Testing Process, Deployment, and Monitoring/Feedback.

Find more best practices on the AWS website.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Bellevue
The Conversational Assistant Services (CAS) seeks a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP) and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. The ideal candidate possesses a solid understanding of machine learning fundamentals and a passion for pushing boundaries in the field. They thrive in fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities . You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. . You will work on core LLM technologies, including developing best-in-class modeling, prompt optimization algorithms to enable Conversation AI use cases · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models.
US, WA, Seattle
Lead the development of cutting-edge AI models to power Amazon's eCommerce ontology - the authoritative source of product knowledge driving exceptional customer experiences. Applied Scientists in this role solve problems related to product classification, attribute extraction, ontology modeling, data integration and enrichment, and scalable knowledge services. It's challenging due to the vast scale, heterogeneous data sources, and evolving domains, but exciting for pushing boundaries in ML, NLP, and knowledge representation research. If you're passionate about driving innovation at scale, we want to hear from you! Key job responsibilities - Lead the research and development of novel AI solutions to enrich and curate Amazon's product ontology (Product Knowledge) at scale - Develop scalable data processing pipelines and architectures to ingest, transform, and enrich product data from various sources (seller listings, customer reviews, etc.) - Collaborate with engineers to design and implement robust services - Work closely with product managers, stakeholders, and subject matter experts to identify opportunities for innovation and drive the roadmap for Product Knowledge - Mentor and upskill junior scientists and engineers, fostering a culture of continuous learning and knowledge sharing - Communicate complex technical concepts and research findings effectively to diverse audiences, including leadership, cross-functional teams, and the wider scientific community - Stay up-to-date with the latest advancements in machine learning, natural language processing, knowledge representation, and related fields, and identify opportunities to apply them to Product Knowledge A day in the life The Amazon product ontology is a structured knowledge base representing product types, attributes, classes, and relationships. It standardizes product data, enabling enhanced customer experiences through improved search and recommendations, streamlined selling processes, and internal data enrichment across Amazon's eCommerce ecosystem. You will work with following stakeholders: - Product Managers represent customer experiences and selling partner experiences - Category Leaders (e.g., apparel, electronics) provide domain knowledge and guidance as subject matter experts - Engineers build and maintain data pipelines and services in production - Ontologists design data models and define guidelines - Other Applied Scientists collaborate on research and innovation About the team The Product Knowledge team at Amazon is dedicated to creating the industry-standard eCommerce product and services ontology. Our diverse team of applied scientists, engineers, ontologists and subject matter experts build a comprehensive ontology enabling exceptional customer and selling partner experiences through high-quality, contextual product knowledge at scale.
US, WA, Bellevue
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Senior Applied Scientist to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. An Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical expertise and a passion for developing science-driven solutions in a fast-paced environment. The ideal candidate will have a solid understanding of state of the art NLP, Generative AI, LLM fine-tuning, alignment, prompt engineering, benchmarking solutions, or CV and Multi-modal models, e.g., Vision Language Models (VLM), zero-shot, few-shot, and semi-supervised learning paradigms, with the ability to apply these technologies to diverse business challenges. You will leverage your deep technical knowledge, a strong foundation in machine learning and AI, and hands-on experience in building large-scale distributed systems to deliver reliable, scalable, and high-performance products. In addition to your technical expertise, you must have excellent communication skills and the ability to influence and collaborate effectively with key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Senior Applied Scientist to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. An Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical expertise and a passion for developing science-driven solutions in a fast-paced environment. The ideal candidate will have a solid understanding of state of the art NLP, Generative AI, LLM fine-tuning, alignment, prompt engineering, benchmarking solutions, or CV and Multi-modal models, e.g., Vision Language Models (VLM), zero-shot, few-shot, and semi-supervised learning paradigms, with the ability to apply these technologies to diverse business challenges. You will leverage your deep technical knowledge, a strong foundation in machine learning and AI, and hands-on experience in building large-scale distributed systems to deliver reliable, scalable, and high-performance products. In addition to your technical expertise, you must have excellent communication skills and the ability to influence and collaborate effectively with key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.