zooxsensors.png
State-of-the-art sensors placed on each corner of the Zoox robotaxi enable it to ‘see’ in all directions simultaneously.

How the Zoox robotaxi predicts everything, everywhere, all at once

A combination of cutting-edge hardware, sensor technology, and bespoke machine learning approaches can predict trajectories of vehicles, people, and even animals, as far as 8 seconds into the future.

We humans often lament that we cannot predict the future, but perhaps we don’t give ourselves quite enough credit. With sufficient practice, our short-term predictive skills become truly remarkable.

Driving is a good example, particularly in urban environments. Navigating through a city, you become aware of a colossal number of dynamic aspects in your surroundings. The other cars — some moving, some stationary — pedestrians, cyclists, traffic lights changing. As you drive, your mind is generating predictions of how the universe around you is likely to manifest: “that car looks likely to pull out in front of me”; “that pedestrian is about to sleepwalk off the sidewalk – be ready to hit the brake”; “the front wheels of that parked car have just turned, so it’s about to move”.

Jesse Levinson, co-founder and CTO of Zoox, on the development of fully autonomous vehicles for mobility-as-a-service

Your power of prediction and anticipation throws a protective buffer zone around you, your passengers, and everyone in your vicinity as you travel from A to B. It is a broad yet very nuanced power, making it incredibly hard to recreate in real-world robotics applications.

Nevertheless, the teams at Zoox have achieved noteworthy success.

The integration of cutting-edge hardware, sensor technology, and bespoke machine learning (ML) approaches has resulted in an autonomous robotaxi that can predict the trajectories of vehicles, people, and even animals in its surroundings, as far as 8 seconds into the future — more than enough to enable the vehicle to make sensible and safe driving decisions.

“Predicting the future — the intentions and movements of other agents in the scene — is a core component of safe, autonomous driving,” says Kai Wang, director of the Zoox Prediction team.

Perceiving, predicting, planning

The AI stack at the center of the Zoox driving system broadly consists of three processes, which occur in order: perception, prediction, and planning. These equate to seeing the world and how everything around the vehicle is currently moving, predicting how everything will move next, and deciding how to move from A to B given those predictions.

The Perception team gathers high-resolution data from the vehicle’s dozens of sensors, which include visual cameras, LiDAR, radar, and longwave-infrared cameras. These sensors, positioned high on the four corners of the vehicle, provide an overlapping, 360-degree field of view that can extend for over a hundred meters. To borrow a popular phrase, this vehicle can see everything, everywhere, all at once.

Related content
Advanced machine learning systems help autonomous vehicles react to unexpected changes.

The robotaxi already contains a detailed semantic map of its environment, called the Zoox Road Network (ZRN), which means it understands everything about local infrastructure, road rules, speed limits, intersection layouts, locations of traffic signals, and so on.

Perception quickly identifies and classifies the other cars, pedestrians, and cyclists in the scene, which are dubbed “agents.” And crucially, it tracks each agent’s velocity and current trajectory. These data are then combined with the ZRN to provide the Zoox vehicle with an incredibly detailed understanding of its environment.

Before these combined data are passed to Prediction, they are instantly boiled down to their essentials, into a format optimized for machine learning. To this end, what Prediction ultimately operates on is a top-down, spatially accurate graphical depiction of the vehicle and all the relevant dynamic and static aspects of its environment: a machine-readable, birds-eye representation of the scene with the robotaxi at the center.

“We draw everything into a 2D image and present it to a convolutional neural network [CNN], which in turn determines what distances matter, what relationships between agents matter, and so on,” says Wang.

Learning from data-rich images

While a human can get the gist of this map, such as the relative positions of all the vehicles (represented by boxes) and pedestrians (different, smaller boxes) in the scene, it is not designed for human consumption, explains Andres Morales, staff software engineer.

zoonsceneprediction.png
A complex scene is converted into an image with many layers, each representing different semantic information. The result is fed into a convolutional neural network to generate predictions.

“This is not an RGB image. It’s got about 60 channels, or layers, which also include semantic information,” he notes. “For example, because someone holding a smartphone tends to behave differently, we might have one channel that represents a pedestrian holding their phone as a ‘1’ and a pedestrian with no phone as a ‘0’.”

From this data-rich image, the ML system produces a probability distribution of potential trajectories for each and every dynamic agent in the scene, from trucks right down to that pet dog milling around near the crosswalk.

These predictions consider not only the current trajectory of each agent, but also include factors such as how cars are expected to behave on given road layouts, what the traffic lights are doing, the workings of crosswalks, and so on.

zooxtruckpredictions.png
An example of a set of predictions for a truck navigating a 3-way intersection. The green boxes represent where the agent could be up to 6 seconds into the future, while the blue box represents where the agent actually went. Each path is a possible future generated by the Prediction system, with an associated likelihood.

These predictions are typically up to about 8 seconds into the future, but they are constantly recalculated every tenth of a second as new information is delivered from Perception.

These weighted predictions are delivered to the Planner aspect of the AI stack — the vehicle’s executive decision-maker — which uses those predictions to help it decide how the Zoox vehicle will operate safely.

From perception through to planning, the whole process is working in real-time; this robotaxi has lightning-quick reactions, should it need them.

Related content
Predicting the future trajectory of a moving agent can be easy when the past trajectory continues smoothly but is challenging when complex interactions with other agents are involved. Recent deep learning approaches for trajectory prediction show promising performance and partially attribute this to successful reasoning about agent-agent interactions. However, it remains unclear which features such black-box

The team can be confident of its predictions because it has a vast pool of data with which to train its ML algorithms — millions of road miles of high-resolution sensor data collected by the Zoox test fleet: Toyota Highlanders retrofitted with an almost identical sensor architecture as the robotaxi mapping and driving autonomously in San Francisco, Seattle, and Las Vegas.

This two framed animation shows Zoox's software making predictions about movements on the left, on the right is the camera view of those same pedestrians crossing the street as the vehicle is stopped
An example of a Zoox vehicle negotiating a busy intersection in Las Vegas at night. The green boxes show the most likely prediction for each agent in the scene as far as 8 seconds into the future.

Zoox has a further advantage.

“We don’t need to label any data by hand, because our data show where things actually moved into the future,” says Wang. “My team doesn’t have a data problem. Our main challenge is that the future is inherently uncertain. Even humans cannot do this task perfectly.”

Utilizing graph neural networks

While perfect prediction is, by its nature, impossible, Wang’s team is currently taking steps on several fronts to raise the vehicle’s prediction capabilities to the next level, firstly by leveraging a graph neural network (GNN) approach.

“Think of the GNN as a message-passing system by which all the agents and static elements in the scene are interconnected,” says Mahsa Ghafarianzadeh, senior software engineer on the Prediction team.

“What this enables is the explicit encoding of the relationships between all the agents in the scene, as well as the Zoox vehicle, and how these relationships might develop into the future.”

One of Zoox’s test vehicles driving autonomously in Las Vegas, the vehicle is traveling down Flamingo Road, there are other cars, several casinos, and a pedestrian bridge in the background
A Zoox test vehicle navigating Las Vegas autonomously.

To give an everyday example, imagine yourself walking down the middle of a long corridor and seeing a stranger walking toward you, also in the middle of the corridor. That act of seeing each other is effectively the passing of a tacit message that would likely cause you both to alter your course slightly, so that by the time you reach each other, you won’t collide or require a sharp course-correction. That’s human nature.

This animation shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.
This shows the output of Zoox models on the same initial scene but conditioned on different future actions the vehicle (green) is considering. Zoox is able to predict different yielding behavior of other cars based on when their vehicle enters the intersection. The center animation even shows they predict a collision if we were to take that particular action.

So this GNN approach results in the prediction of more natural behaviors between everyone around the Zoox vehicle, because the algorithm, through training on Zoox’s vast pool of real-world road data, is better able to model how agents, on foot or in cars, affect each other’s behavior in the real world.

Related content
Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

Another way the Prediction team is improving accuracy is by embracing the fact that what you do as a driver affects other drivers, which in turn affects you. For example, if you get into your parked car and pull out just a little into busy traffic, a driver coming up the road behind you may slow down or stop to let you out, or they may drive straight past, obliging you to wait for a better opportunity.

“Prediction doesn’t happen in a vacuum. Other people’s behaviors are dependent on how their world is changing. If you’re not capturing that within prediction, you’re limiting yourself,” says Wang.

Next steps

Work is now underway to integrate Prediction even more deeply with Planner, creating a feedback loop. Instead of simply receiving predictions and making a decision on how to proceed, the Planner can now interact with Prediction along these lines: “If I perform action X, or Y, or Z, how are the agents in my vicinity likely to adjust their own behavior in each case?”

I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving.
Mahsa Ghafarianzadeh

In this way, the Zoox robotaxi will become even more naturalistic and adept at negotiations with other vehicles, while also creating a smoother-flowing ride for its customers.

“The team and I started to work on this new mode a couple years ago, just as a research project,” says Morales, “and now we’re focused on its integration, ironing everything out, reducing latency, and generally making it production-ready.”

The ever-increasing sophistication of the Zoox robotaxi’s predictive abilities is a clear source of pride for the team dedicated to it.

“I’ve been in this team for over five years. I’ve seen Prediction grow from being just three source code files implementing basic heuristics to predict trajectories to where it is now, at the cutting edge of deep learning. It’s incredible how fast everything is evolving,” says Ghafarianzadeh.

Indeed, at this rate, the Zoox robotaxi may ultimately become the most prescient vehicle on the road. Though that prediction comes with the usual caveat: Nobody can perfectly predict the future.

Research areas

Related content

AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. We are seeking a Principal Applied Scientist working on machine learning applications in life sciences. This role combines scientific leadership with hands-on innovation, driving solutions from exploratory research through production-ready solutions deployment, while maintaining high scientific standards. You will work with Amazon's large-scale computing resources to accelerate advances in machine learning applications. Key job responsibilities - Lead ML for life science efforts using computational design approaches and ML-based tools. - Guide teams in applying SOTA ML methods, experimentation design, and modeling approaches. - Transform complex real world problems into scientific challenges and allocate resources effectively. - Review requirements, conduct technical architecture reviews, and make informed judgments around technical and business tradeoffs. - Provide mentorship to Applied Scientists, Research Scientists and Data Scientists while maintaining scientific rigor. - Collaborate with cross functional teams.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.