Zoox 3D map.gif
This visualization shows a Zoox vehicle aligning lidar data to Zoox's 3D map to localize itself in downtown San Francisco. Central to the Zoox navigation system is a cluster of capabilities: calibration, localization, and mapping.
Zoox

How Zoox vehicles “find themselves” in an ever-changing world

Advanced machine learning systems help autonomous vehicles react to unexpected changes.

For a human to drive successfully around an urban environment, they must be able to trust their eyes and other senses, know where they are, understand the permissible ways to move their vehicle safely, and of course know how to reach their destination.

Building these abilities, and so many more, into an autonomous electric vehicle designed to transport customers smoothly and safely around densely populated cities takes an astonishing amount of technological innovation. Since its founding in 2014, Zoox has been developing autonomous ride-hailing vehicles, and the systems that support them, from the ground up. The company, which is based in Foster City, California, became an independent subsidiary of Amazon in 2020.

Zoox Fully Autonomous Vehicle at Coit Tower San Francsico
The Zoox L5 fully autonomous, all-electric robotaxi has no forward or backward, can reach speeds of up to 75 miles per hour, and can move all four wheels independently.
Zoox

The Zoox purpose-built robot is an autonomous, pod-like electric vehicle that can carry four passengers in comfort. It has no forward or backward, being equally happy to drive in either direction, at up to 75 miles per hour, and can move all four wheels independently. There are no manual driving controls inside the vehicle.

Zoox has already done a great deal of testing of its autonomous driving systems using a fleet of retrofitted Toyota Highlander vehicles — with a human driver at the wheel, ready to take over if needed — in San Francisco, Las Vegas, Foster City, and Seattle.

Central to the Zoox navigation system is a cluster of capabilities called calibration, localization, and mapping. Only through this combination of abilities can Zoox vehicles understand their environment with exquisite precision, know where they are in relation to everything in their vicinity and beyond, and know exactly where they are going.

Zoox test vehicles, in this instance Toyota Highlanders, are retrofitted with an almost identical sensor configuration and compute system to their purpose-built vehicle.
Zoox has already done a great deal of testing of its autonomous driving systems using a fleet of Toyota Highlanders retrofitted with an almost identical sensor configuration and compute system to the purpose-built vehicle — with a human driver at the wheel, ready to take over if needed — in San Francisco, Las Vegas, Foster City, and Seattle.
Zoox

This is the domain of Zoox’s CLAMS (Calibration, Localization, and Mapping Simultaneously) and Zoox Road Network (ZRN) teams, which together enable the vehicle to meaningfully understand its location and process its surroundings. To get an idea of how these elements work in concert, Amazon Science spoke to several members of these teams.

In terms of awareness of its environment, the Zoox vehicle can fairly be likened to an all-seeing eye. Its state-of-the-art sensor architecture is made up of LiDARs (Light Detection and Ranging), radars, visual cameras, and longwave-infrared cameras. These are arrayed symmetrically around the outside of the vehicle, providing an overlapping, 360-degree field of view.

With this many sensors in play, it is critical that their input is stitched together accurately to create a true and self-consistent picture of everything happening all around the vehicle, moment to moment. To do that, the vehicle needs to know exactly where its sensors are in relation to each other, and with sensors of such high resolution, it’s not enough simply to know where the sensors were attached to the vehicle in the first place.

“To a very minor but still important degree, every vehicle is a special snowflake in some way,” says Taylor Arnicar, staff technical program manager, who oversees the CLAMS and ZRN teams. “And the other reality is we’re exposing these vehicles to rather harsh real-world conditions. There’s shock and vibe, thermal events, and all these things can cause very slight changes in sensor positioning.” Were such changes to be ignored, it could result in unacceptably “blurry” vision, Arnicar says.

In other autonomous-robotics applications, sensor calibration typically entails the robot looking at a specific calibration target, displayed on surrounding infrastructure, such as a wall. With the Zoox vehicle destined for the ever-changing urban environment, the Zoox team is pioneering infrastructure-free calibration.

This animation shows a Zoox system aligning color camera edges to lidar depth edges
This animation shows a Zoox system aligning color camera edges to lidar depth edges. With the Zoox vehicle destined for the ever-changing urban environment, the Zoox team is pioneering infrastructure-free calibration.
Zoox

“That means we rely on the natural environment — whatever objects, shapes, and colors are in the world around the vehicle as it drives,” says Arnicar. One way the team does this is by automatically identifying image gradients — such as the edges of buildings or the trunks of trees — from the vehicle’s color camera data and aligning those with depth edges in the LiDAR data.

It is worth emphasizing that a superpower of the Zoox vehicle is seeing its surroundings with superhuman perception. With so many sensors mounted externally, in pods on the corners of the vehicles, it can see what’s coming around every corner before a human driver would. Its LiDARs and visual cameras mean it knows what lies in every direction with high precision. It even boasts a kind of X-ray vision: “Certain materials don’t obstruct the radar,” says Elena Strumm, Zoox’s engineering manager for mapping algorithms. “When a bicyclist is cycling behind a bush, for example, we might get a really clear radar signature on them, even if that bush has occluded the LiDAR and visual cameras.”

Related content
Jesse Levinson, co-founder and CTO of Zoox, answers 3 questions about the challenges of developing autonomous vehicles and why he’s excited about Zoox’s robotaxi fleet.

Now that the vehicle can rely on what it senses, it needs a map. The Zoox team gathers its map data first-hand by driving around the cities in which it will operate in Toyota Highlanders retrofitted with the full Zoox sensor architecture. LiDAR data and visual images collected in this way can be made into high-definition maps by the CLAMS team. But first, all the people, cars, and other ephemeral aspects of the urban landscape must be removed from the LiDAR data. For this, machine learning is required.

When the Zoox vehicle is in normal urban operations, it is fundamental that its perception system recognizes the aspects of incoming LiDAR data that represent pedestrians, cyclists, cars or trucks — or indeed anything that may move in ways that need to be anticipated. LiDARs create enormous amounts of information about the dynamic 3D environment around the vehicle in the form of “point clouds” — sets of points that describe the objects and surfaces visible to the LiDAR. Using machine learning to instantly identify people in a fast-moving, dynamic environment is a challenge, particularly as people may be moving, static, partly occluded, in a wheelchair, only visible from the knees down, or any number of possibilities.

A raw lidar point cloud of Caesars Palace in Las Vegas, before it’s turned into an efficient mesh representation for the 3D map.
A raw lidar point cloud of Caesars Palace in Las Vegas, before it’s turned into an efficient mesh representation for the 3D map.
Zoox

“Machine-learned AI systems excel at this kind of pattern-matching problem. You feed millions of examples of something and then they can do a great good job of recognizing that thing in the abstract,” Arnicar explains.

In a beautiful piece of synergy, the Zoox mapping team benefits from this safety-critical application of machine learning because they require the reverse information — they want to take the people and cars out of the data so that they can create 3D maps of the road landscape and infrastructure alone.

“Once these elements are identified and removed from the mapping data, it becomes possible to combine LiDAR-based point clouds from overlapping locations to create high resolution 3D maps,” says Strumm.

But maps are not useful to the vehicle without meaning. To create a “semantic map,” the ZRN team adds layers of information to the 3D map that encode everything static that the vehicle needs to navigate the road safely, including speed limits, traffic light locations, one-way streets, keep-clear zones and more.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

The final core piece of the CLAMS team’s work is localization. Zoox’s localization technology allows each vehicle to know where it is in the world — and on its map — to within a few centimeters, and its direction to within a fraction of a degree. The vehicle does this not only by comparing its visual inputs with its map, but also by utilizing GPS, accelerometers, wheel speeds, gyroscopes, and more. It can therefore check its precise location and velocity hundreds of times per second. Armed with a combination of the physical and semantic maps, and always aware of its place in relation to every object or person in its vicinity, the vehicle can navigate safely to its destination.

Part of the localization challenge is that any map will become dated over time, Arnicar explains. “Once you build the map — from the moment the data is collected — you need to consider that it could be out of date.” This is because the world can change anytime, anywhere, without notice. “On one occasion one of our Toyota Highlanders was driving down the street collecting data, and right in front of us was a construction truck with a guy hanging off the back, repainting the lane line in a different place as they drove along. No amount of fast mapping can catch up with these sorts of scenarios.” In practice, this means the map needs to be treated as a guidebook for the vehicle, not as gospel.

“This changeability of the real world led us to create the ZRN Monitor, a system on the vehicle that determines whether the actual road environment has differed from our semantic map data,” says Chris Gibson, engineering manager for the Zoox Road Network team. “For example, if lane markings have changed and now the double yellow lines have moved, then if we don’t detect that dynamically, we could potentially end up driving into opposing traffic. From a safety perspective, we must make absolutely certain that the vehicle does not drive into such areas.” The ZRN Monitor’s role is to identify and, to an extent, evaluate the safety implications of such unanticipated environmental modifications. These notifications are also an indication that it may be time to update the map for that area with more recent sensor data.

In the uncommon situation in which the vehicle encounters a challenging driving situation and it isn’t highly confident of a safe way to proceed, it can request “TeleGuidance” — a human operator located in a dedicated service center is provided with the full 3D understanding of the vehicle’s environment, as well as live-streamed sensor data.

A Zoox TeleGuidance tactician providing remote guidance to a vehicle from the Zoox HQ
A Zoox TeleGuidance tactician provides remote guidance to a vehicle from Zoox HQ.
Zoox

“Imagine a construction zone. The Zoox vehicle might need to be directed to drive on the other side of the road, which would normally carry oncoming traffic. That’s a rule that under most circumstances you shouldn’t break, but in this instance, a TeleGuidance tactician might provide the robot with waypoints to ensure it knows where it needs to go in that moment,” says Gibson. The vehicle remains responsible for the safety of its passengers, however, and continues to drive autonomously at all times while acting on the TeleGuidance information.

Before paying customers will be able to use their smartphones to hail a Zoox vehicle, more on-road testing first needs to be done. Zoox has built dozens of its purpose-built vehicles and is testing them on “semi-private courses” in California, according to Zoox’s co-founder and chief technology officer, Jesse Levinson. Next on the agenda is full testing on public roads, says Levinson, who promises that is “really not that far away. We’re not talking about years.”

So, what does it feel like to be transported in a Zoox vehicle?

“I’ve ridden in a Zoox vehicle, with no safety driver, no steering wheel, no anything — just me in the vehicle,” says Arnicar. “And it is magical. It’s what I’ve been working at Zoox seven years to experience. I’ve seen Zoox go from sketches on a napkin to something I can ride in. That's pretty amazing.”

When an autonomous Zoox vehicle ultimately comes around a corner near you, know this for a fact: no matter how striking and novel it looks, it will see you before you see it.

Research areas

Related content

US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Research Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Research Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Research Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics
US, NY, New York
Amazon is looking for an Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase reliable access to supply, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As an Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Applied Scientist you will: - Set the scientific strategic vision for the team. You - - lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is central to Twitch's decision-making process, and data scientists are a critical component to evangelize data-driven decision making in all of our operations. As a data scientist at Twitch, you will be on the ground floor with your team, shaping the way product performance is measured, defining what questions should be asked, and scaling analytics methods and tools to support our growing business, leading the way for high quality, high velocity decisions for your team. For this role, we're looking for an experienced product data scientist who will help develop the strategy and evaluate/improve product initiatives within our Creator product team. You will be responsible to define and track KPIs, design experiments, evaluate A/B tests, implement data instrumentation, and inform on investment. Our ideal candidate is a "full-stack" data powerhouse who uses data to drive decision making to make the best products for our creators and their communities. Your input will be core to decision making across all major product strategies and initiatives that our team builds. You will work closely with product managers, technical program managers, engineering, data scientists, and organization leadership within and outside of the Creator organization. You Will - Inform product strategies by defining and updating core metrics for each initiative - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Evaluate and forecast impact of product features on creators, viewers, and the entire Twitch ecosystem - Design A/B experiments to drive product direction with iterative innovation and measurement - Drive the team's analysis roadmap and prioritize the most valuable projects - Tackle complex and ambiguous analytic projects, resolve ambiguity and accurately identify the trade-offs between speed and quality and apply or route work as necessary - Dive deep into the data to understand how creator and viewer behaviors change with the evolution of our product - Act as our team's thought leader on best practices and move towards long-term vision of sustainable and thriving data processes - Own data collection and product instrumentation implementation and quality assurance - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount About the team Twitch is all about community, and our Community Team is a core pillar of what makes Twitch, Twitch. Teams within Community are responsible for a myriad of product areas impacting the creator, viewer, and moderator journeys on our platform. As a member of our team, you'll build solutions that improve g the experience of millions of daily active users on our platform and create tools that keep both streamers and viewers engaged and connected on our platform.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, Santa Clara
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of structure-aware next generation systems that can reason over heterogenous data assets and reduce hallucination making AI systems reliable. The team develops AI systems that utilize structure exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. To accomplish this goal we are seeking scientists with expertise in large language models, graph machine learning, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for graph retrieval augmented generation, agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. A day in the life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. In 2019, Amazon co-founded The Climate Pledge and made a commitment to achieve net-zero carbon by 2040 —10 years ahead of the Paris Agreement. We invited others to join us and there are now more than 300 businesses and organizations across 51 industries and 29 countries that have signed the Pledge, which means we are collectively coming at the climate crisis from nearly every sector and nearly every angle. As part of our efforts to decarbonize our business, we became the world’s largest corporate purchaser of renewable energy in 2020, and last year, we reached 85% renewable energy across our business, and are on a path to power our operations with 100% renewable energy by 2025. We recently announced that AWS will be water positive by 2030, returning more water to communities than it uses in its direct operations. The company also announced its 2021 global water use efficiency (WUE) metric of 0.25 liters of water per kilowatt-hour, demonstrating AWS’s leadership in water efficiency among cloud providers. To learn more about AWS’s water+ commitment visit: Water Stewardship. Come join the team that is building the tools and innovative technology to manage our growing portfolio of renewable energy investments, including solar, on-shore and off-shore wind farms. Key job responsibilities As an data scientist, you will employ machine learning and analytics to create scalable solutions for problems in sustainable energy space. You will dissect large historical business data sets to enhance and streamline essential processes. You will partner with data and software teams to create models for predictive insights and establish automated methods for large data analysis. A day in the life To learn more, you can visit: amazon sustainability in the cloud About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Santa Clara
Are you passionate about applying automated reasoning and program analysis to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. We’re looking for an Applied Scientist to help strengthen our customers' security with automation for managed controls. AWS Identity provides the bedrock for secure and continuous access to all AWS services. By quickly connecting millions of users, across the world we empower organizations and enterprises to accelerate their cloud and digital transformation. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Key job responsibilities * Interact with various teams to develop an understanding of their security and safety requirements. * Apply the acquired knowledge to build tools and algorithms, find problems, or show the absence of security/safety problems. * Implement these capabilities through the use of Automated Reasoning and various concepts from programming languages. * Perform analysis of the customer systems using tools developed in-house or externally provided * Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.