Pinch-grasping robot handles items with precision

Preliminary tests show a prototype pinch-grasping robot achieved a 10-fold reduction in damage on items such as books and boxes.

For humans, finding and fetching a bottle of ketchup from a cluttered refrigerator without toppling the milk carton is a routine task. For robots, this remains a challenge of epic complexity.

At Amazon, scientists are addressing this challenge by teaching robots to understand cluttered environments in three dimensions, locate specific items, and safely retrieve them using a move called the pinch grasp — that unique thumb-and-finger hold that many people take for granted.

The research is part of an ongoing effort in the field of item-specific manipulation to develop robots that can handle millions of items across the kaleidoscope of shapes and sizes that are shipped to customers every day from Amazon fulfillment centers.

Watch the pinch grasping arm sort through items

We humans find and retrieve specific items with hands that are loaded with nerves connected to the brain for signal processing, hand-eye coordination, and motion control.

“In robotics, we don’t have the mechanical ability of a five-finger dexterous hand,” said Aaron Parness, a senior manager for applied science at Amazon Robotics AI. “But we are starting to get some of the ability to reason and think about how to grasp. We’re starting to catch up. Where pinch-grasping is really interesting is taking something mechanically simple and making it highly functional.”

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

This catching up is powered by breakthrough machine learning capabilities aimed at understanding the three-dimensional geometry of cluttered environments and how to navigate in them, according to Siddhartha Srinivasa, director of Amazon Robotics AI.

“Not only are we able to build robust three-dimensional models of the scene, we’re able to identify a specific item in the scene and use machine learning to know how best to pick it up and to move it quickly and without damage,” he said.

From suction to pinching

Today, vacuum-like suction is the default technology for robots tasked to pick up and move items of different shapes and sizes. These robots typically have elastic suction cups that form to the surface of the item to be lifted, creating a tight seal that provides control. The process works well across a range of items, from gift cards to cylindrical poster tubes.

Watch the Robin robotic arm deftly handling packages

Challenges occur if a vacuum seal breaks prematurely, which can happen when the angle of attachment changes during motion.

“If you are moving really fast from one location to another, objects can swing out and then just fly away,” said Can Erdogan, a senior applied scientist at Amazon Robotics AI. “All of the sudden, there are items on the ground.”

Increased suction to prevent premature detachment can also cause damage such as blistered or ripped packaging.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

In other instances, the item to be moved requires contact on more than one surface. Books, for example, flop open if lifted from only the front or back cover. Another challenge is to get a tight seal on bags filled with granular items such as marbles or sand.

Pinch-grasping mimics the firm grip of a hand, enabling the robot to safely move the item from one place to the next without dropping it or causing damage.

“We are not just interested in picking up an item. We want to move the item,” Erdogan noted. “To do that, you need to be able to control it.”

Getting a grip on the scene

People who are sighted can estimate the shape of an item they intend to move, even when part of it is obscured from view. Take the ketchup bottle in the refrigerator: Even if only the top of it can be seen, experience and context allow people to imagine the full shape. We automatically create a mental model of it and a plan to grasp and move it without spilling the milk.

One of our big investments was making sure we can visualize the scene from multiple cameras and fuse all of that information as fast as possible so that we can get the full shape of the objects.
Can Erdogan

“Our robots are not quite there yet, but to be able to grasp this item from the front and back, we need to understand this whole shape,” Erdogan said. “So, one of our big investments was making sure we can visualize the scene from multiple cameras and fuse all of that information as fast as possible so that we can get the full shape of the objects.”

This 3D scene understanding is generated by multiple camera angles along with machine learning models trained to recognize and estimate the shape of individual items that help the robot compute how to grasp the item on two surfaces.

A set of motion algorithms take this understanding of the scene and item identification and combine it with the known dynamics of the robot — such as arm and hand weight — to calculate how to move the object from one place to another. The fusion of these models allows the robot to execute a pinch grasp and move something without bumping into other items.

In addition, multiple cameras provide a set of eyes on the scene — also known as continuous perception — to monitor the grasp and movement of an item so that the robot can adjust its plan of motion as necessary.

That’s an advance for robots, which typically “look at the scene, make a decision of what to do, and then do it. It’s almost like they close their eyes after they decide what to do, which is quite a shame because there are things going on in the scene while you’re doing it. Most of the damage to items happens in those moments,” Erdogan said.

Move fast, don’t break things

An advantage of suction is speed. That’s because contact is on a single surface. This allows a robot to quickly pick and move items such as chocolate bars from a shelf to a box. Grasping an item on two surfaces is more complicated, and thus takes longer, Erdogan noted. To make up for the extra time spent on a pinch grasp, the team optimized the robot arm to move faster.

“If you have a better grasp on the item, you can move faster. Moving faster also means you can take your time to achieve these good grasps,” he said. “We are lucky we have collaborators on our team who are focusing on motion, and we did this nice optimization where we made both the grasp and the motion faster.”

In preliminary tests, the team’s prototype pinch-grasping robot achieved a 10-fold reduction in damage on certain items, such as books, without a loss of speed when compared to robots that use suction.

“They not only showed they could grip a lot of objects, but they did it really fast — they got to 1,000 units per hour,” said Parness, who oversees the project.

The ability to grasp a diversity of items and move them quickly without damage makes pinch-grasping well suited for eventual deployment in an Amazon fulfillment center.

“What’s interesting about e-commerce, as opposed to manufacturing, is it’s much more dynamic,” Parness explained. “It’s a pen, and then it’s a teddy bear, and then it’s a light bulb, and then it’s a t-shirt, and then it’s a book.”

Fulfillment automation

For deployment in an Amazon fulfillment center, a key challenge is to generalize the robot’s item specific manipulation capability to all items available in the Amazon Store, noted Srinivasa.

Related content
By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

“A majority of the items the robot is going to encounter in production it’s probably never seen before, so it needs to be able to generalize effectively to previously unseen items,” he explained. “Humans do this, too. When we see something novel, we try to map it to the nearest thing that we have encountered before and then try to use that experience from that task and modify it for a new situation.”

Another challenge is to gear the robot so that it can effectively manipulate the vast range of items available in the Amazon Store. For now, the robot uses an off-the-shelf hand to manipulate items that weigh less than two pounds, about half of the items available for purchase.

We can get to the questions that are relevant for the world of robotics in a very data-driven way. Once you have those questions, answering them is a joy. And when you answer them, you know how impactful they can be.
Siddhartha Srinivasa

Going forward, the team will need to design a hand — and associated tools — from scratch that can handle the full range of available items, Erdogan said.

What’s more, while pinch-grasping is superior to suction for some items, suction is better for others, especially flat items such as cards and rulers. A robot optimized for deployment in a fulfillment center may require suction and pinching, along with a machine learning algorithm that’s trained to decide which technique to use for any given situation, Parness said.

“As a person, you pick up a book differently than if you pick up a coin or a t-shirt,” he explained. “We need robots to be intelligent about the items they’re manipulating. If I’m picking up a hammer to hammer a nail in, I want to grasp it in a certain way. But if I’m picking up a hammer to go put it in a box to ship it to you, I want to grasp it in a different way. That’s the future of item intelligence.”

Amazon’s size, scale, and mission enable this level of robotics research, Srinivasa said, and it also enhances the effect it can have in the real world. For example, working within Amazon provides scientists with access to data on current item damage rates and models that show the improvements required to justify the investment in robotics. This provides a focus for his team’s scientists and engineers.

“We can get to the questions that are relevant for the world of robotics in a very data-driven way. Once you have those questions, answering them is a joy,” he said. “And when you answer them, you know how impactful they can be.”

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. We are seeking an Applied Scientist who has a solid background in applied Machine Learning and Data Science, deep passion for building data-driven products, ability to formulate data insights and scientific vision, and has a proven track record of executing complex projects and delivering business impact. Key job responsibilities • Data driven insights to accelerate acquisition of new members. • Develop and implement personalized marketing strategies and campaigns tailored to individual customer preferences, behaviors, and demographics to enhance engagement and drive customer loyalty. • Develop, implement, and optimize marketing attribution models to accurately measure the impact of various marketing channels and campaigns, and create valuation frameworks to assess the ROI and contribution of each channel to overall business objectives. • Work with a group of both applied scientists and software engineers to deliver machine-learning and data science solutions to production. • Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Mentor talented members, provide technical and career development guidance to both scientists and engineers in the organization. About the team The Marketing Science team applies scientific methods and research techniques to enhance our understanding of AB consumer behavior, market trends, and the effectiveness of marketing strategies. Our goal is to develop and advance theories and models that can be used to make informed decisions in marketing and to provide insights into consumer decision-making processes. Additionally, we seek to identify and explore emerging trends and technologies in marketing, and to develop innovative approaches for addressing the challenges and opportunities in the field.
US, WA, Seattle
Amazon’s eCommerce Foundation (eCF) organization provides the core technologies that drive and power Amazon's Stores, Digital, and Other (SDO) businesses. Millions of customer page views and orders per day are enabled by the systems eCF builds from the ground up. CloudTune, within eCF, empowers growth and business agility needs by automatically and efficiently managing AWS capacity and business processes needed to safely meet Amazon’s customer demand. CloudTune serves its primary customers, internal software teams, through forecast driven automation of cost controllership, capacity management and scaling. We predict expected load, and drive procurement and allocation of AWS capacity for new product launches and high velocity events like Prime Day and Cyber Monday. CloudTune, in partnership with Region Flexibility, is driving an SDO-wide program to diversify our use of AWS regions beyond DUB, IAD, and PDX regions. The objective of the Diversify AWS Region Usage (DARU) program is to mitigate the risk of capacity concentration by encouraging teams to design workloads that are region-flexible, utilize AWS automation such as Flexible Fleets to access multiple capacity pools, and optimize workload placement so SDO efficiently utilizes AWS. This is a strategic, highly visible, multi-year program which spans all Amazon business. CloudTune is looking for a Data Scientist to join our forecasting team and support DARU program. The team develops sophisticated algorithms that involve learning from large amounts of past data, such as actual sales, website traffic, merchandising activities, promotions, similar products and product attributes to forecast the demand for our compute infrastructure. These forecasts are used to determine the level of investment in capital expenditures, promotional activity, engineering efficiency projects and determining financial performance. As a Data Scientist CloudTune, you will work with other scientists, software engineers, data engineers, and product managers on a variety of important applied machine learning problems in the area of time series modeling. You will be an expert at communicating insights and recommendations to audiences of varying levels of technical sophistication. You will lead the design, implementation, and delivery of data science solutions for complex capacity planning problems. Key job responsibilities - Research and develop new methodologies for capacity demand forecasting. - Translate analytic insights into concrete, actionable recommendations for business or product improvement. Develop and present these as papers to senior stakeholders. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Drive scalable solutions for multi-year capacity demand forecasting horizons. - Play an integral role in developing a roadmap to expand and enhance demand forecasting for cloud compute resources. - Create and track accuracy and performance metrics (both technical and business metrics). - Create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders.
US, WA, Bellevue
The Conversational Assistant Services (CAS) seeks a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP) and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. The ideal candidate possesses a solid understanding of machine learning fundamentals and a passion for pushing boundaries in the field. They thrive in fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities . You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. . You will work on core LLM technologies, including developing best-in-class modeling, prompt optimization algorithms to enable Conversation AI use cases · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models.
US, WA, Seattle
Amazon's Pricing & Promotions Optimization Science is seeking a motivated Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices and promotions on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied scientists to define, measure, and launch customer-obsessed solutions across all products listed on Amazon. This role requires an individual with exceptional AI and data science expertise, excellent cross-functional collaboration skills, strong business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing/promotion techniques - Build strong collaborations. Partner with product, engineering, and science teams within and outside Pricing & Promotions org to deploy AI/Data solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in neural networks, search & ranking, natural language processing, probabilistic forecasting, reinforcement learning, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery - Successfully execute & deliver. Apply your exceptional AI and data science expertise to incrementally move the needle on some of our hardest science and tech problems About the team About the team: the Pricing and Promotion Optimization team within P2 Science leads the definition, measurement, and implementation of the state-of-the-art AI and data science solutions to improve price/promotion quality across the site and bring value to customers, sellers and Amazon.