Recent honors and awards for Amazon scientists

Researchers honored for their contributions to the scientific community.

Kostas Bimpikis honored with the Revenue Management and Pricing Section Prize

Kostas Bimpikis, an Amazon Scholar working with Amazon Flex, won the 2022 INFORMS Revenue Management and Pricing Section Prize for the 2019 paper, “Spatial Pricing in Ride-Sharing Networks”.

Kostas Bimpikis profile pic
Kostas Bimpikis

The paper, coauthored by Ozan Candogan, professor of operations management at the University of Chicago, and Daniela Saban, associate professor of Operations, Information, and Technology at Stanford, was awarded for being “the best contribution to the science of pricing and revenue management published in English.”

The paper, published in Operations Research in 2019, explores “spatial price discrimination in the context of a ride-sharing platform that serves a network of locations.” The paper addressed the issue of location-based pricing and found that, by setting different prices across their networks, ride-sharing companies and drivers would benefit from more balanced demand patterns.

The award was presented at INFORMS 2022, the world’s largest operations research and analytics conference.

Bimpikis is an associate professor of Operations, Information, and Technology and a Winnick Family Faculty Scholar at the Stanford Graduate School of Business.

Bimpikis, who joined Amazon as a Scholar in July 2020, also currently serves as an associate editor for Management Science, Operations Research, and Manufacturing and Service Operations Management.

Anton van den Hengel earns Pattern Recognition Journal’s Best Paper Award

Anton van den Hengel, Amazon director of applied science, has won Pattern Recognition Journal’s Best Paper Award for a 2019 paper on deep-learning architectures.

Anton van den Hengel is seen smiling into the camera, with some office buildings in the background
Anton van den Hengel

The paper, “Wider or Deeper: Revisiting the ResNet Model for Visual Recognition”, undermined conventional wisdom by demonstrating that increasing depth may not be the best way to improve the performance of a deep neural network. Van den Hengel, who was also a professor of computer science at the University of Adelaide, coauthored the paper with fellow university researchers Zifeng Wu and Chunhua Shen.

Since its publication, the paper has received more than 1,000 citations. The model published with the paper has been included in many primary deep learning packages and in MATLAB.

Van den Hengel joined Amazon as director of applied science in March of 2020. At Amazon, he leads a research team working in machine learning and computer vision, with specific focus on vision and language, as well as on natural language processing.

Van den Hengel was the founding director of the Australian Institute for Machine Learning (AIML), Australia’s first institute dedicated to machine learning research. He continues to work part-time as director of AIML’s new Centre for Augmented Reasoning, whose mission is to build core artificial intelligence (AI) capability in Australia.

Established more than 50 years ago, Pattern Recognition accepts papers that make original contributions to the theory, methodology, and application of pattern recognition.

Sergei Kalinin named an Asia-Pacific Artificial Intelligence Association fellow and winner of Foresight Institute Feynman Prize in Experiment

Sergei Kalinin, an Amazon principal research scientist, has been named a fellow of the Asia-Pacific Artificial Intelligence Association (AAIA).

Sergei Kalinin
Sergei Kalinin

The AAIA selected Kalinin for his “outstanding achievements in the area of application of machine learning and artificial intelligence in atomically resolved and mesoscopic imaging.”

Traditionally, mesoscopic imaging allows scientists to explore objects ranging from materials microstructure to organization of biological tissues. Kalinin applied mesoscopic imaging to guide the development of advanced materials for energy and information technologies.

Kalinin earned his master’s degree in materials science from Moscow State University in 1998. He went on to earn his PhD in materials science from the University of Pennsylvania in 2002. He spent nearly 20 years at Oak Ridge National Laboratory (ORNL), where his initial research centered around scanning-probe microscopy methods for probing ferroelectric and energy materials, including batteries and fuel cells. In 2016, Kalinin began working on machine learning methods in electron microscopy for applications such as real-time image analytics, automated and autonomous microscopy, and direct atomic fabrication.

Kalinin left ORNL in March of 2022 to become a research professor at the University of Tennessee, Knoxville. At that time, he also joined Amazon as a principal research scientist working on special projects. In addition to AI, his areas of interest include photovoltaics, physics, and electrochemistry.

Kalinin also has served on the board of directors of the Materials Research Society and in 2019 was a founding member of the American Physical Society Topical Group on Data Science. He is a fellow of the American Physical Society, Materials Research Society, the Institute of Physics, the Institute of Electrical and Electronics Engineers (IEEE), and AVS: Science and Technology of Materials, Interfaces, and Processing (formerly the American Vacuum Society).

The AAIA is a nonprofit, nongovernmental interdisciplinary organization of industries that use AI in their applications, such as computing, communication, medical, transportation, agriculture, and many others. Incorporated in Hong Kong in 2021, the organization’s primary mission is to help scientists enhance the development and application of AI through academic research, exchanges, conferences, publications, and other activities.

Additionally, Kalinin recently won the 2022 Foresight Institute Feynman Prize in Experiment for his work in nanotechnology.

Nanotechnology studies materials and systems by focusing on the manipulation of individual atoms and molecules at nanoscale, or less than 100 millionth of a millimeter.

Awarded annually since 1993, the Feynman Prize is named in honor of the pioneer American theoretical physicist Richard Feynman, who won the Nobel Prize in physics in 1965 for his contributions to the development of quantum electrodynamics. Many nanotechnology advocates recognize Feynman’s 1959 lecture, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics”, as a seminal inspiration for the burgeoning field of nanotechnology.

The Foresight Institute Feynman Prize for Experiment is awarded for excellence in experimentation to the researchers whose recent work has most advanced the achievement of Feynman’s goal for nanotechnology. This goal centers around molecular manufacturing, which is the construction of atomically precise products through the use of molecular machine systems.

Vinícius Loti de Lima wins Brazil’s Best PhD Thesis Award

The Brazilian Computer Society has awarded first place in the XXXV Theses and Dissertations Contest (CTD 2022) to the doctoral thesis of Vinícius Loti de Lima, an Amazon applied scientist. His thesis was also awarded best thesis by the Brazilian Society of Operational Research and received honorable mention from the Brazilian Society of Computational and Applied Mathematics.

Vinícius Loti de Lima
Vinícius Loti de Lima

The thesis, “Integer Programming Based Methods Applied to Cutting, Packing, and Scheduling”, studied solution methods for combinatorial optimization. The thesis proposed several general methods for deriving algorithms that are fundamental to computer science and operations research.

In the paper, de Lima applied his methods to many well-studied cutting, packing, and scheduling problems. He also proposed solutions to facilitate future research on two-dimensional cutting and packing.

Established in 1978, the Brazilian Computer Society (or SBC, for Sociedade Brasileira de Computação in Portuguese), is an educational organization dedicated to the advancement of computer science in Brazil. SBC is the largest computer society in South America and serves as a forum for researchers, students, and professionals in computer science and information technology.

On average, there are about 300 PhD defenses in computer science each year in Brazil. The Brazilian Computer Society chose 43 candidates for evaluation for the award.

In December 2021, de Lima earned his PhD in computer science from Universidade Estadual de Campinas in São Paulo. His primary research interests included the development of mathematical programming methods, combinatorial algorithms, and decomposition schemes to solve large-scale optimization problems of general relevance.

In April 2022, de Lima joined Amazon as an applied scientist on the capacity planning team. At Amazon, de Lima works on solving real-world optimization problems at scale, applying in practice the theories he developed during his doctoral research.

Gérard Medioni elected as NAI fellow

The National Academy of Inventors (NAI) has named Gérard Medioni, vice president, and distinguished scientist, AWS Applications, as an NAI fellow. Election as an academic fellow is the highest professional distinction awarded to academic inventors.

Gérard Medioni
Gérard Medioni

Medioni has spent more than 40 years researching computer vision and has received more than 52 patents for his work.

He joined Amazon in 2014 to lead the development of the “just walk out” technology for Amazon Go grocery stores. More recently, he has been working on Amazon One, a service that lets people use their palms as a contactless method to pay at a store, present a loyalty card, badge into work, or enter a stadium. He also led the development of the recommendation system for Amazon Style, Amazon’s first-ever physical store with clothing, shoes, and accessories for men, women, and kids.

Medioni, who earned his PhD in computer science from the University of Southern California (USC) in 1983, is also professor emeritus of computer science in the USC Viterbi School of Engineering. Medioni served as chair of the USC Viterbi Department of Computer Science from 2001 to 2007.

NAI aims to benefit society through recognizing and encouraging inventors with US patents, enhancing the visibility of academic technology and innovation, encouraging the disclosure of intellectual property, and educating and mentoring students.

The 2022 class of NAI fellows spans 110 organizations, with research and entrepreneurship that cover a broad range of scientific disciplines.

IFIP confers distinction of fellow to Rustan Leino

The International Federation for Information Processing (IFIP) has named Amazon senior principal applied scientist Rustan Leino as an IFIP fellow, its most prestigious technical distinction. Leino earned the honor in recognition of “outstanding contributions in the field of information processing.”

Rustan Leino
Rustan Leino

IFIP fellowship recognizes members who contribute significantly to driving innovation, conducting research, and developing industry in the information communications technology sector.

Leino works for Amazon Web Services (AWS) as a senior principal engineer in the Automated Reasoning Group (ARG).

At AWS, Leino’s work focuses on formal verification, programming languages, and software-correctness tools for software engineers.

Leino, who earned his master’s degree and PhD in computer science the California Institute of Technology, began his professional career in 1989 on the Microsoft Windows LAN Manager team, and worked at Microsoft for nearly three decades before joining Amazon in 2017. He was named a fellow by the Association for Computing Machinery (ACM) in 2016.

Established in 1960 under the auspices of the United Nations Educational, Scientific and Cultural Organization, the IFIP is a global organization for researchers and professionals working in information and communication technologies.

Leino is currently the chairperson of IFIP Working Group (WG) 2.3, “Programming Methodology.” He has been an active member of WG 2.3 for more than 20 years, serving as secretary for nine years and vice chair for six years. Other IFIP WG 2.3 members at AWS are Ernie Cohen, Rajeev Joshi, Serdar Tasiran, and Emina Torlak, as well as emeritus members John Harrison and Ken McMillan.

Association for Computing Machinery honors Matthew Lease as distinguished member

The Association for Computing Machinery (ACM) has named Amazon Scholar Matthew Lease as a distinguished member for Outstanding Scientific Contributions to Computing. Distinguished members are longstanding ACM members selected by their peers for specific, impactful work that has “spurred innovation, enhanced computer science education, and moved the field forward.”

Matthew Lease
Matthew Lease

Lease is one of 67 distinguished members named in 2022. Honorees are selected for their contributions in three separate categories: educational, engineering, and scientific. They must have at least 15 years of experience in computing, five years of professional ACM membership, and significant accomplishments in the field of computing. Distinguished members also have served as mentors or role models through guiding technical career development.

Lease is the head of the Laboratory for Artificial Intelligence and Human-Centered Computing at University of Texas (UT) Austin, where his research integrates AI with human-computer interaction techniques.

In addition, Lease is a faculty founder and leader of UT Austin’s Good Systems, an eight-year, university-wide initiative to design responsible AI technologies that include agency, equity, trust, transparency, democracy, and justice.

Lease, who earned PhD in computer science from Brown in 2009, has been at UT Austin since August 2009. As a professor in the School of Information, Lease has two principal research areas: information retrieval (IR) and crowdsourcing and human computation (HCOMP).

His IR research works to improve search engines through the development of new models and algorithms. His HCOMP works focuses on using machine learning to build hybrid systems that integrate AI and HCOMP.

Prem Natarajan and Sherief Reda named IEEE fellows

Prem Natarajan, vice president of Alexa AI, was elected to be a fellow of the IEEE Computer Society for his contributions to conversational AI systems, spoken language translation, and home voice-assistant systems.

Prem Natarajan.jpeg

The holder of ten patents, Natarajan leads the development of technical vision and operations strategy for Alexa.

Natarajan earned a master’s degree and PhD in electrical engineering from Tufts University, and completed the executive program in business administration and management from the Massachusetts Institute of Technology Sloan School of Management.

He spent 17 years at Raytheon BBN Technologies, a subsidiary of defense and civilian contractor Raytheon Company. While at Raytheon BBN, Natarajan launched the company’s computer vision, human social-cultural behavior modeling, and document image-processing business lines.

Natarajan is on leave from his position as senior vice dean of engineering at the USC Viterbi School of Engineering. He also is the founding executive director of the USC Computing Forum.

The IEEE also elevated Amazon principal research scientist Sherief Reda to IEEE fellow for “contributions to energy-efficient and approximate computing.”

Sherief Reda
Sherief Reda

Reda’s research interests center around computer design optimizations, with focus on energy-efficient computing, electronic design automation of integrated circuits, embedded systems, and computer architecture.

He joined Amazon as a principal research scientist in July of 2021, working on optimization methods for supply chain systems. Amazon’s Supply Chain Optimization Technology (SCOT) team works on complex supply chain issues at the scale that Amazon requires.

After earning his PhD in computer science and engineering from the University of California, San Diego in 2006, Reda joined the faculty at Brown University. There he is a full professor of Engineering and of Computer Science. In addition, he leads Brown’s SCALable Energy-Efficient Computing Systems (SCALE) Laboratory. He has more than 135 publications, holds five US patents and has been a principal investigator (PI) or co-PI on more than $21 million worth of funded projects from federal agencies and industry.

John Preskill named to White House National Quantum Initiative Advisory Committee

John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar, was named as a member of the National Quantum Initiative Advisory Committee (NQIAC). He will be providing assessments and recommendations for the National Quantum Initiative (NQI) Act.

John Preskill
John Preskill

The NQIAC, which is comprised of leaders in the field from industry, academia, and federal laboratories, is tasked with providing an independent assessment of the NQI Program and to make recommendations for the president, Congress, the National Science and Technology Council (NSTC) Subcommittee on Quantum Information Science, and the NSTC Subcommittee on Economic and Security Implications of Quantum Science when they’re reviewing and revising the NQI Program.

In the announcement, Preskill was cited for research contributions that include “proving security of quantum protocols, proposing and analyzing methods for reliable storage and processing of quantum information, identifying universal properties of quantum entanglement in quantum many-body systems, and applying quantum information theory to quantum gravity and black holes.”

In 2000, he founded Caltech’s Institute for Quantum Information, which is now the Institute for Quantum Information and Matter.

Preskill is a member of the National Academy of Sciences and an American Physical Society fellow.

Preskill joined Amazon Web Service’s quantum computing research effort in June 2020 as an Amazon Scholar.

Related content

US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Bellevue
We are seeking a Senior Manager, Applied Science to lead the applied science charter for Amazon’s Last-Hundred-Yard automation initiative, developing the algorithms, models, and learning systems that enable safe, reliable, and scalable autonomous delivery from vehicle to customer doorstep. This role owns the scientific direction across perception, localization, prediction, planning, learning-based controls, human-robot interaction (HRI), and data-driven autonomy validation, operating in complex, unstructured real-world environments. The Senior Manager will build and lead a high-performing team of applied scientists, set the technical vision and research-to-production roadmap, and ensure tight integration between science, engineering, simulation, and operations. This leader is responsible for translating ambiguous real-world delivery problems into rigorous modeling approaches, measurable autonomy improvements, and production-ready solutions that scale across cities, terrains, weather conditions, and customer scenarios. Success in this role requires deep expertise in machine learning and robotics, strong people leadership, and the ability to balance long-term scientific innovation with near-term delivery milestones. The Senior Manager will play a critical role in defining how Amazon applies science to unlock autonomous last-mile delivery at scale, while maintaining the highest bars for safety, customer trust, and operational performance. Key job responsibilities Set and own the applied science vision and roadmap for last-hundred-yard automation, spanning perception, localization, prediction, planning, learning-based controls, and HRI. Build, lead, and develop a high-performing applied science organization, including hiring, mentoring, performance management, and technical bar-raising. Drive the end-to-end science lifecycle from problem formulation and data strategy to model development, evaluation, deployment, and iteration in production. Partner closely with autonomy engineering to translate scientific advances into scalable, production-ready autonomy behaviors. Define and own scientific success metrics (e.g., autonomy performance, safety indicators, scenario coverage, intervention reduction) and ensure measurable impact. Lead the development of learning-driven autonomy using real-world data, simulation, and offline/online evaluation frameworks. Establish principled approaches for generalization across environments, including weather, terrain, lighting, customer properties, and interaction scenarios. Drive alignment between real-world operations and simulation, ensuring tight feedback loops for data collection and model validation. Influence safety strategy and validation by defining scientific evidence required for autonomy readiness and scale. Represent applied science in executive reviews, articulating trade-offs, risks, and long-term innovation paths.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.