Recent honors and awards for Amazon scientists

Researchers honored for their contributions to the scientific community.

Kostas Bimpikis honored with the Revenue Management and Pricing Section Prize

Kostas Bimpikis, an Amazon Scholar working with Amazon Flex, won the 2022 INFORMS Revenue Management and Pricing Section Prize for the 2019 paper, “Spatial Pricing in Ride-Sharing Networks”.

Kostas Bimpikis profile pic
Kostas Bimpikis

The paper, coauthored by Ozan Candogan, professor of operations management at the University of Chicago, and Daniela Saban, associate professor of Operations, Information, and Technology at Stanford, was awarded for being “the best contribution to the science of pricing and revenue management published in English.”

The paper, published in Operations Research in 2019, explores “spatial price discrimination in the context of a ride-sharing platform that serves a network of locations.” The paper addressed the issue of location-based pricing and found that, by setting different prices across their networks, ride-sharing companies and drivers would benefit from more balanced demand patterns.

The award was presented at INFORMS 2022, the world’s largest operations research and analytics conference.

Bimpikis is an associate professor of Operations, Information, and Technology and a Winnick Family Faculty Scholar at the Stanford Graduate School of Business.

Bimpikis, who joined Amazon as a Scholar in July 2020, also currently serves as an associate editor for Management Science, Operations Research, and Manufacturing and Service Operations Management.

Anton van den Hengel earns Pattern Recognition Journal’s Best Paper Award

Anton van den Hengel, Amazon director of applied science, has won Pattern Recognition Journal’s Best Paper Award for a 2019 paper on deep-learning architectures.

Anton van den Hengel is seen smiling into the camera, with some office buildings in the background
Anton van den Hengel

The paper, “Wider or Deeper: Revisiting the ResNet Model for Visual Recognition”, undermined conventional wisdom by demonstrating that increasing depth may not be the best way to improve the performance of a deep neural network. Van den Hengel, who was also a professor of computer science at the University of Adelaide, coauthored the paper with fellow university researchers Zifeng Wu and Chunhua Shen.

Since its publication, the paper has received more than 1,000 citations. The model published with the paper has been included in many primary deep learning packages and in MATLAB.

Van den Hengel joined Amazon as director of applied science in March of 2020. At Amazon, he leads a research team working in machine learning and computer vision, with specific focus on vision and language, as well as on natural language processing.

Van den Hengel was the founding director of the Australian Institute for Machine Learning (AIML), Australia’s first institute dedicated to machine learning research. He continues to work part-time as director of AIML’s new Centre for Augmented Reasoning, whose mission is to build core artificial intelligence (AI) capability in Australia.

Established more than 50 years ago, Pattern Recognition accepts papers that make original contributions to the theory, methodology, and application of pattern recognition.

Sergei Kalinin named an Asia-Pacific Artificial Intelligence Association fellow and winner of Foresight Institute Feynman Prize in Experiment

Sergei Kalinin, an Amazon principal research scientist, has been named a fellow of the Asia-Pacific Artificial Intelligence Association (AAIA).

Sergei Kalinin
Sergei Kalinin

The AAIA selected Kalinin for his “outstanding achievements in the area of application of machine learning and artificial intelligence in atomically resolved and mesoscopic imaging.”

Traditionally, mesoscopic imaging allows scientists to explore objects ranging from materials microstructure to organization of biological tissues. Kalinin applied mesoscopic imaging to guide the development of advanced materials for energy and information technologies.

Kalinin earned his master’s degree in materials science from Moscow State University in 1998. He went on to earn his PhD in materials science from the University of Pennsylvania in 2002. He spent nearly 20 years at Oak Ridge National Laboratory (ORNL), where his initial research centered around scanning-probe microscopy methods for probing ferroelectric and energy materials, including batteries and fuel cells. In 2016, Kalinin began working on machine learning methods in electron microscopy for applications such as real-time image analytics, automated and autonomous microscopy, and direct atomic fabrication.

Kalinin left ORNL in March of 2022 to become a research professor at the University of Tennessee, Knoxville. At that time, he also joined Amazon as a principal research scientist working on special projects. In addition to AI, his areas of interest include photovoltaics, physics, and electrochemistry.

Kalinin also has served on the board of directors of the Materials Research Society and in 2019 was a founding member of the American Physical Society Topical Group on Data Science. He is a fellow of the American Physical Society, Materials Research Society, the Institute of Physics, the Institute of Electrical and Electronics Engineers (IEEE), and AVS: Science and Technology of Materials, Interfaces, and Processing (formerly the American Vacuum Society).

The AAIA is a nonprofit, nongovernmental interdisciplinary organization of industries that use AI in their applications, such as computing, communication, medical, transportation, agriculture, and many others. Incorporated in Hong Kong in 2021, the organization’s primary mission is to help scientists enhance the development and application of AI through academic research, exchanges, conferences, publications, and other activities.

Additionally, Kalinin recently won the 2022 Foresight Institute Feynman Prize in Experiment for his work in nanotechnology.

Nanotechnology studies materials and systems by focusing on the manipulation of individual atoms and molecules at nanoscale, or less than 100 millionth of a millimeter.

Awarded annually since 1993, the Feynman Prize is named in honor of the pioneer American theoretical physicist Richard Feynman, who won the Nobel Prize in physics in 1965 for his contributions to the development of quantum electrodynamics. Many nanotechnology advocates recognize Feynman’s 1959 lecture, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics”, as a seminal inspiration for the burgeoning field of nanotechnology.

The Foresight Institute Feynman Prize for Experiment is awarded for excellence in experimentation to the researchers whose recent work has most advanced the achievement of Feynman’s goal for nanotechnology. This goal centers around molecular manufacturing, which is the construction of atomically precise products through the use of molecular machine systems.

Vinícius Loti de Lima wins Brazil’s Best PhD Thesis Award

The Brazilian Computer Society has awarded first place in the XXXV Theses and Dissertations Contest (CTD 2022) to the doctoral thesis of Vinícius Loti de Lima, an Amazon applied scientist. His thesis was also awarded best thesis by the Brazilian Society of Operational Research and received honorable mention from the Brazilian Society of Computational and Applied Mathematics.

Vinícius Loti de Lima
Vinícius Loti de Lima

The thesis, “Integer Programming Based Methods Applied to Cutting, Packing, and Scheduling”, studied solution methods for combinatorial optimization. The thesis proposed several general methods for deriving algorithms that are fundamental to computer science and operations research.

In the paper, de Lima applied his methods to many well-studied cutting, packing, and scheduling problems. He also proposed solutions to facilitate future research on two-dimensional cutting and packing.

Established in 1978, the Brazilian Computer Society (or SBC, for Sociedade Brasileira de Computação in Portuguese), is an educational organization dedicated to the advancement of computer science in Brazil. SBC is the largest computer society in South America and serves as a forum for researchers, students, and professionals in computer science and information technology.

On average, there are about 300 PhD defenses in computer science each year in Brazil. The Brazilian Computer Society chose 43 candidates for evaluation for the award.

In December 2021, de Lima earned his PhD in computer science from Universidade Estadual de Campinas in São Paulo. His primary research interests included the development of mathematical programming methods, combinatorial algorithms, and decomposition schemes to solve large-scale optimization problems of general relevance.

In April 2022, de Lima joined Amazon as an applied scientist on the capacity planning team. At Amazon, de Lima works on solving real-world optimization problems at scale, applying in practice the theories he developed during his doctoral research.

Gérard Medioni elected as NAI fellow

The National Academy of Inventors (NAI) has named Gérard Medioni, vice president, and distinguished scientist, AWS Applications, as an NAI fellow. Election as an academic fellow is the highest professional distinction awarded to academic inventors.

Gérard Medioni
Gérard Medioni

Medioni has spent more than 40 years researching computer vision and has received more than 52 patents for his work.

He joined Amazon in 2014 to lead the development of the “just walk out” technology for Amazon Go grocery stores. More recently, he has been working on Amazon One, a service that lets people use their palms as a contactless method to pay at a store, present a loyalty card, badge into work, or enter a stadium. He also led the development of the recommendation system for Amazon Style, Amazon’s first-ever physical store with clothing, shoes, and accessories for men, women, and kids.

Medioni, who earned his PhD in computer science from the University of Southern California (USC) in 1983, is also professor emeritus of computer science in the USC Viterbi School of Engineering. Medioni served as chair of the USC Viterbi Department of Computer Science from 2001 to 2007.

NAI aims to benefit society through recognizing and encouraging inventors with US patents, enhancing the visibility of academic technology and innovation, encouraging the disclosure of intellectual property, and educating and mentoring students.

The 2022 class of NAI fellows spans 110 organizations, with research and entrepreneurship that cover a broad range of scientific disciplines.

IFIP confers distinction of fellow to Rustan Leino

The International Federation for Information Processing (IFIP) has named Amazon senior principal applied scientist Rustan Leino as an IFIP fellow, its most prestigious technical distinction. Leino earned the honor in recognition of “outstanding contributions in the field of information processing.”

Rustan Leino
Rustan Leino

IFIP fellowship recognizes members who contribute significantly to driving innovation, conducting research, and developing industry in the information communications technology sector.

Leino works for Amazon Web Services (AWS) as a senior principal engineer in the Automated Reasoning Group (ARG).

At AWS, Leino’s work focuses on formal verification, programming languages, and software-correctness tools for software engineers.

Leino, who earned his master’s degree and PhD in computer science the California Institute of Technology, began his professional career in 1989 on the Microsoft Windows LAN Manager team, and worked at Microsoft for nearly three decades before joining Amazon in 2017. He was named a fellow by the Association for Computing Machinery (ACM) in 2016.

Established in 1960 under the auspices of the United Nations Educational, Scientific and Cultural Organization, the IFIP is a global organization for researchers and professionals working in information and communication technologies.

Leino is currently the chairperson of IFIP Working Group (WG) 2.3, “Programming Methodology.” He has been an active member of WG 2.3 for more than 20 years, serving as secretary for nine years and vice chair for six years. Other IFIP WG 2.3 members at AWS are Ernie Cohen, Rajeev Joshi, Serdar Tasiran, and Emina Torlak, as well as emeritus members John Harrison and Ken McMillan.

Association for Computing Machinery honors Matthew Lease as distinguished member

The Association for Computing Machinery (ACM) has named Amazon Scholar Matthew Lease as a distinguished member for Outstanding Scientific Contributions to Computing. Distinguished members are longstanding ACM members selected by their peers for specific, impactful work that has “spurred innovation, enhanced computer science education, and moved the field forward.”

Matthew Lease
Matthew Lease

Lease is one of 67 distinguished members named in 2022. Honorees are selected for their contributions in three separate categories: educational, engineering, and scientific. They must have at least 15 years of experience in computing, five years of professional ACM membership, and significant accomplishments in the field of computing. Distinguished members also have served as mentors or role models through guiding technical career development.

Lease is the head of the Laboratory for Artificial Intelligence and Human-Centered Computing at University of Texas (UT) Austin, where his research integrates AI with human-computer interaction techniques.

In addition, Lease is a faculty founder and leader of UT Austin’s Good Systems, an eight-year, university-wide initiative to design responsible AI technologies that include agency, equity, trust, transparency, democracy, and justice.

Lease, who earned PhD in computer science from Brown in 2009, has been at UT Austin since August 2009. As a professor in the School of Information, Lease has two principal research areas: information retrieval (IR) and crowdsourcing and human computation (HCOMP).

His IR research works to improve search engines through the development of new models and algorithms. His HCOMP works focuses on using machine learning to build hybrid systems that integrate AI and HCOMP.

Prem Natarajan and Sherief Reda named IEEE fellows

Prem Natarajan, vice president of Alexa AI, was elected to be a fellow of the IEEE Computer Society for his contributions to conversational AI systems, spoken language translation, and home voice-assistant systems.

Prem Natarajan.jpeg

The holder of ten patents, Natarajan leads the development of technical vision and operations strategy for Alexa.

Natarajan earned a master’s degree and PhD in electrical engineering from Tufts University, and completed the executive program in business administration and management from the Massachusetts Institute of Technology Sloan School of Management.

He spent 17 years at Raytheon BBN Technologies, a subsidiary of defense and civilian contractor Raytheon Company. While at Raytheon BBN, Natarajan launched the company’s computer vision, human social-cultural behavior modeling, and document image-processing business lines.

Natarajan is on leave from his position as senior vice dean of engineering at the USC Viterbi School of Engineering. He also is the founding executive director of the USC Computing Forum.

The IEEE also elevated Amazon principal research scientist Sherief Reda to IEEE fellow for “contributions to energy-efficient and approximate computing.”

Sherief Reda
Sherief Reda

Reda’s research interests center around computer design optimizations, with focus on energy-efficient computing, electronic design automation of integrated circuits, embedded systems, and computer architecture.

He joined Amazon as a principal research scientist in July of 2021, working on optimization methods for supply chain systems. Amazon’s Supply Chain Optimization Technology (SCOT) team works on complex supply chain issues at the scale that Amazon requires.

After earning his PhD in computer science and engineering from the University of California, San Diego in 2006, Reda joined the faculty at Brown University. There he is a full professor of Engineering and of Computer Science. In addition, he leads Brown’s SCALable Energy-Efficient Computing Systems (SCALE) Laboratory. He has more than 135 publications, holds five US patents and has been a principal investigator (PI) or co-PI on more than $21 million worth of funded projects from federal agencies and industry.

John Preskill named to White House National Quantum Initiative Advisory Committee

John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar, was named as a member of the National Quantum Initiative Advisory Committee (NQIAC). He will be providing assessments and recommendations for the National Quantum Initiative (NQI) Act.

John Preskill
John Preskill

The NQIAC, which is comprised of leaders in the field from industry, academia, and federal laboratories, is tasked with providing an independent assessment of the NQI Program and to make recommendations for the president, Congress, the National Science and Technology Council (NSTC) Subcommittee on Quantum Information Science, and the NSTC Subcommittee on Economic and Security Implications of Quantum Science when they’re reviewing and revising the NQI Program.

In the announcement, Preskill was cited for research contributions that include “proving security of quantum protocols, proposing and analyzing methods for reliable storage and processing of quantum information, identifying universal properties of quantum entanglement in quantum many-body systems, and applying quantum information theory to quantum gravity and black holes.”

In 2000, he founded Caltech’s Institute for Quantum Information, which is now the Institute for Quantum Information and Matter.

Preskill is a member of the National Academy of Sciences and an American Physical Society fellow.

Preskill joined Amazon Web Service’s quantum computing research effort in June 2020 as an Amazon Scholar.

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Sunnyvale
The Region Flexibility Engineering (RFE) team builds and leverages foundational infrastructure capabilities, tools, and datasets needed to support the rapid global expansion of Amazon's SOA infrastructure. Our team focuses on robust and scalable architecture patterns and engineering best practices, driving adoption of ever-evolving and AWS technologies. RFE is looking for a passionate, results-oriented, inventive Data Scientist to refine and execute experiments towards our grand vision, influence and implement technical solutions for regional placement automation, cross-region libraries, and tooling useful for teams across Amazon. As a Data Scientist in Region Flexibility, you will work to enable Amazon businesses to leverage new AWS regions and improve the efficiency and scale of our business. Our project spans across all of Amazon Stores, Digital and Others (SDO) Businesses and we work closely with AWS teams to advise them on SDO requirements. As innovators who embrace new technology, you will be empowered to choose the right highly scalable and available technology to solve complex problems and will directly influence product design. The end-state architecture will enable services to break region coupling while retaining the ability to keep critical business functions within a region. This architecture will improve customer latency through local affinity to compute resources and reduce the blast radius in case of region failures. We leverage off the sciences of data, information processing, machine learning, and generative AI to improve user experience, automation, service resilience, and operational efficiency. Key job responsibilities As an RFE Data Scientist, you will work closely with product and technical leaders throughout Amazon and will be responsible for influencing technical decisions and building data-driven automation capabilities in areas of development/modeling that you identify as critical future region flexibility offerings. You will identify both enablers and blockers of adoption for region flex, and build models to raise the bar in terms of understanding questions related to data set and service relationships and predict the impact of region changes and provide offerings to mitigate that impact. About the team The Regional Flexibility Engineering (RFE) organization supports the rapid global expansion of Amazon's infrastructure. Our projects support Amazon businesses like Stores, Alexa, Kindle, and Prime Video. We drive adoption of ever-evolving and AWS and non-AWS technologies, and work closely with AWS teams to improve AWS public offerings. Our organization focuses on robust and scalable solutions, simple to use, and delivered with engineering best practices. We leverage and build foundational infrastructure capabilities, tools, and datasets that enable Amazon teams to delight our customers. With millions of people using Amazon’s products every day, we appreciate the importance of making our solutions “just work”.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.