Recent honors and awards for Amazon scientists

Researchers honored for their contributions to the scientific community.

Kostas Bimpikis honored with the Revenue Management and Pricing Section Prize

Kostas Bimpikis, an Amazon Scholar working with Amazon Flex, won the 2022 INFORMS Revenue Management and Pricing Section Prize for the 2019 paper, “Spatial Pricing in Ride-Sharing Networks”.

Kostas Bimpikis profile pic
Kostas Bimpikis

The paper, coauthored by Ozan Candogan, professor of operations management at the University of Chicago, and Daniela Saban, associate professor of Operations, Information, and Technology at Stanford, was awarded for being “the best contribution to the science of pricing and revenue management published in English.”

The paper, published in Operations Research in 2019, explores “spatial price discrimination in the context of a ride-sharing platform that serves a network of locations.” The paper addressed the issue of location-based pricing and found that, by setting different prices across their networks, ride-sharing companies and drivers would benefit from more balanced demand patterns.

The award was presented at INFORMS 2022, the world’s largest operations research and analytics conference.

Bimpikis is an associate professor of Operations, Information, and Technology and a Winnick Family Faculty Scholar at the Stanford Graduate School of Business.

Bimpikis, who joined Amazon as a Scholar in July 2020, also currently serves as an associate editor for Management Science, Operations Research, and Manufacturing and Service Operations Management.

Anton van den Hengel earns Pattern Recognition Journal’s Best Paper Award

Anton van den Hengel, Amazon director of applied science, has won Pattern Recognition Journal’s Best Paper Award for a 2019 paper on deep-learning architectures.

Anton van den Hengel is seen smiling into the camera, with some office buildings in the background
Anton van den Hengel

The paper, “Wider or Deeper: Revisiting the ResNet Model for Visual Recognition”, undermined conventional wisdom by demonstrating that increasing depth may not be the best way to improve the performance of a deep neural network. Van den Hengel, who was also a professor of computer science at the University of Adelaide, coauthored the paper with fellow university researchers Zifeng Wu and Chunhua Shen.

Since its publication, the paper has received more than 1,000 citations. The model published with the paper has been included in many primary deep learning packages and in MATLAB.

Van den Hengel joined Amazon as director of applied science in March of 2020. At Amazon, he leads a research team working in machine learning and computer vision, with specific focus on vision and language, as well as on natural language processing.

Van den Hengel was the founding director of the Australian Institute for Machine Learning (AIML), Australia’s first institute dedicated to machine learning research. He continues to work part-time as director of AIML’s new Centre for Augmented Reasoning, whose mission is to build core artificial intelligence (AI) capability in Australia.

Established more than 50 years ago, Pattern Recognition accepts papers that make original contributions to the theory, methodology, and application of pattern recognition.

Sergei Kalinin named an Asia-Pacific Artificial Intelligence Association fellow and winner of Foresight Institute Feynman Prize in Experiment

Sergei Kalinin, an Amazon principal research scientist, has been named a fellow of the Asia-Pacific Artificial Intelligence Association (AAIA).

Sergei Kalinin
Sergei Kalinin

The AAIA selected Kalinin for his “outstanding achievements in the area of application of machine learning and artificial intelligence in atomically resolved and mesoscopic imaging.”

Traditionally, mesoscopic imaging allows scientists to explore objects ranging from materials microstructure to organization of biological tissues. Kalinin applied mesoscopic imaging to guide the development of advanced materials for energy and information technologies.

Kalinin earned his master’s degree in materials science from Moscow State University in 1998. He went on to earn his PhD in materials science from the University of Pennsylvania in 2002. He spent nearly 20 years at Oak Ridge National Laboratory (ORNL), where his initial research centered around scanning-probe microscopy methods for probing ferroelectric and energy materials, including batteries and fuel cells. In 2016, Kalinin began working on machine learning methods in electron microscopy for applications such as real-time image analytics, automated and autonomous microscopy, and direct atomic fabrication.

Kalinin left ORNL in March of 2022 to become a research professor at the University of Tennessee, Knoxville. At that time, he also joined Amazon as a principal research scientist working on special projects. In addition to AI, his areas of interest include photovoltaics, physics, and electrochemistry.

Kalinin also has served on the board of directors of the Materials Research Society and in 2019 was a founding member of the American Physical Society Topical Group on Data Science. He is a fellow of the American Physical Society, Materials Research Society, the Institute of Physics, the Institute of Electrical and Electronics Engineers (IEEE), and AVS: Science and Technology of Materials, Interfaces, and Processing (formerly the American Vacuum Society).

The AAIA is a nonprofit, nongovernmental interdisciplinary organization of industries that use AI in their applications, such as computing, communication, medical, transportation, agriculture, and many others. Incorporated in Hong Kong in 2021, the organization’s primary mission is to help scientists enhance the development and application of AI through academic research, exchanges, conferences, publications, and other activities.

Additionally, Kalinin recently won the 2022 Foresight Institute Feynman Prize in Experiment for his work in nanotechnology.

Nanotechnology studies materials and systems by focusing on the manipulation of individual atoms and molecules at nanoscale, or less than 100 millionth of a millimeter.

Awarded annually since 1993, the Feynman Prize is named in honor of the pioneer American theoretical physicist Richard Feynman, who won the Nobel Prize in physics in 1965 for his contributions to the development of quantum electrodynamics. Many nanotechnology advocates recognize Feynman’s 1959 lecture, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics”, as a seminal inspiration for the burgeoning field of nanotechnology.

The Foresight Institute Feynman Prize for Experiment is awarded for excellence in experimentation to the researchers whose recent work has most advanced the achievement of Feynman’s goal for nanotechnology. This goal centers around molecular manufacturing, which is the construction of atomically precise products through the use of molecular machine systems.

Vinícius Loti de Lima wins Brazil’s Best PhD Thesis Award

The Brazilian Computer Society has awarded first place in the XXXV Theses and Dissertations Contest (CTD 2022) to the doctoral thesis of Vinícius Loti de Lima, an Amazon applied scientist. His thesis was also awarded best thesis by the Brazilian Society of Operational Research and received honorable mention from the Brazilian Society of Computational and Applied Mathematics.

Vinícius Loti de Lima
Vinícius Loti de Lima

The thesis, “Integer Programming Based Methods Applied to Cutting, Packing, and Scheduling”, studied solution methods for combinatorial optimization. The thesis proposed several general methods for deriving algorithms that are fundamental to computer science and operations research.

In the paper, de Lima applied his methods to many well-studied cutting, packing, and scheduling problems. He also proposed solutions to facilitate future research on two-dimensional cutting and packing.

Established in 1978, the Brazilian Computer Society (or SBC, for Sociedade Brasileira de Computação in Portuguese), is an educational organization dedicated to the advancement of computer science in Brazil. SBC is the largest computer society in South America and serves as a forum for researchers, students, and professionals in computer science and information technology.

On average, there are about 300 PhD defenses in computer science each year in Brazil. The Brazilian Computer Society chose 43 candidates for evaluation for the award.

In December 2021, de Lima earned his PhD in computer science from Universidade Estadual de Campinas in São Paulo. His primary research interests included the development of mathematical programming methods, combinatorial algorithms, and decomposition schemes to solve large-scale optimization problems of general relevance.

In April 2022, de Lima joined Amazon as an applied scientist on the capacity planning team. At Amazon, de Lima works on solving real-world optimization problems at scale, applying in practice the theories he developed during his doctoral research.

Gérard Medioni elected as NAI fellow

The National Academy of Inventors (NAI) has named Gérard Medioni, vice president, and distinguished scientist, AWS Applications, as an NAI fellow. Election as an academic fellow is the highest professional distinction awarded to academic inventors.

Gérard Medioni
Gérard Medioni

Medioni has spent more than 40 years researching computer vision and has received more than 52 patents for his work.

He joined Amazon in 2014 to lead the development of the “just walk out” technology for Amazon Go grocery stores. More recently, he has been working on Amazon One, a service that lets people use their palms as a contactless method to pay at a store, present a loyalty card, badge into work, or enter a stadium. He also led the development of the recommendation system for Amazon Style, Amazon’s first-ever physical store with clothing, shoes, and accessories for men, women, and kids.

Medioni, who earned his PhD in computer science from the University of Southern California (USC) in 1983, is also professor emeritus of computer science in the USC Viterbi School of Engineering. Medioni served as chair of the USC Viterbi Department of Computer Science from 2001 to 2007.

NAI aims to benefit society through recognizing and encouraging inventors with US patents, enhancing the visibility of academic technology and innovation, encouraging the disclosure of intellectual property, and educating and mentoring students.

The 2022 class of NAI fellows spans 110 organizations, with research and entrepreneurship that cover a broad range of scientific disciplines.

IFIP confers distinction of fellow to Rustan Leino

The International Federation for Information Processing (IFIP) has named Amazon senior principal applied scientist Rustan Leino as an IFIP fellow, its most prestigious technical distinction. Leino earned the honor in recognition of “outstanding contributions in the field of information processing.”

Rustan Leino
Rustan Leino

IFIP fellowship recognizes members who contribute significantly to driving innovation, conducting research, and developing industry in the information communications technology sector.

Leino works for Amazon Web Services (AWS) as a senior principal engineer in the Automated Reasoning Group (ARG).

At AWS, Leino’s work focuses on formal verification, programming languages, and software-correctness tools for software engineers.

Leino, who earned his master’s degree and PhD in computer science the California Institute of Technology, began his professional career in 1989 on the Microsoft Windows LAN Manager team, and worked at Microsoft for nearly three decades before joining Amazon in 2017. He was named a fellow by the Association for Computing Machinery (ACM) in 2016.

Established in 1960 under the auspices of the United Nations Educational, Scientific and Cultural Organization, the IFIP is a global organization for researchers and professionals working in information and communication technologies.

Leino is currently the chairperson of IFIP Working Group (WG) 2.3, “Programming Methodology.” He has been an active member of WG 2.3 for more than 20 years, serving as secretary for nine years and vice chair for six years. Other IFIP WG 2.3 members at AWS are Ernie Cohen, Rajeev Joshi, Serdar Tasiran, and Emina Torlak, as well as emeritus members John Harrison and Ken McMillan.

Association for Computing Machinery honors Matthew Lease as distinguished member

The Association for Computing Machinery (ACM) has named Amazon Scholar Matthew Lease as a distinguished member for Outstanding Scientific Contributions to Computing. Distinguished members are longstanding ACM members selected by their peers for specific, impactful work that has “spurred innovation, enhanced computer science education, and moved the field forward.”

Matthew Lease
Matthew Lease

Lease is one of 67 distinguished members named in 2022. Honorees are selected for their contributions in three separate categories: educational, engineering, and scientific. They must have at least 15 years of experience in computing, five years of professional ACM membership, and significant accomplishments in the field of computing. Distinguished members also have served as mentors or role models through guiding technical career development.

Lease is the head of the Laboratory for Artificial Intelligence and Human-Centered Computing at University of Texas (UT) Austin, where his research integrates AI with human-computer interaction techniques.

In addition, Lease is a faculty founder and leader of UT Austin’s Good Systems, an eight-year, university-wide initiative to design responsible AI technologies that include agency, equity, trust, transparency, democracy, and justice.

Lease, who earned PhD in computer science from Brown in 2009, has been at UT Austin since August 2009. As a professor in the School of Information, Lease has two principal research areas: information retrieval (IR) and crowdsourcing and human computation (HCOMP).

His IR research works to improve search engines through the development of new models and algorithms. His HCOMP works focuses on using machine learning to build hybrid systems that integrate AI and HCOMP.

Prem Natarajan and Sherief Reda named IEEE fellows

Prem Natarajan, vice president of Alexa AI, was elected to be a fellow of the IEEE Computer Society for his contributions to conversational AI systems, spoken language translation, and home voice-assistant systems.

Prem Natarajan.jpeg

The holder of ten patents, Natarajan leads the development of technical vision and operations strategy for Alexa.

Natarajan earned a master’s degree and PhD in electrical engineering from Tufts University, and completed the executive program in business administration and management from the Massachusetts Institute of Technology Sloan School of Management.

He spent 17 years at Raytheon BBN Technologies, a subsidiary of defense and civilian contractor Raytheon Company. While at Raytheon BBN, Natarajan launched the company’s computer vision, human social-cultural behavior modeling, and document image-processing business lines.

Natarajan is on leave from his position as senior vice dean of engineering at the USC Viterbi School of Engineering. He also is the founding executive director of the USC Computing Forum.

The IEEE also elevated Amazon principal research scientist Sherief Reda to IEEE fellow for “contributions to energy-efficient and approximate computing.”

Sherief Reda
Sherief Reda

Reda’s research interests center around computer design optimizations, with focus on energy-efficient computing, electronic design automation of integrated circuits, embedded systems, and computer architecture.

He joined Amazon as a principal research scientist in July of 2021, working on optimization methods for supply chain systems. Amazon’s Supply Chain Optimization Technology (SCOT) team works on complex supply chain issues at the scale that Amazon requires.

After earning his PhD in computer science and engineering from the University of California, San Diego in 2006, Reda joined the faculty at Brown University. There he is a full professor of Engineering and of Computer Science. In addition, he leads Brown’s SCALable Energy-Efficient Computing Systems (SCALE) Laboratory. He has more than 135 publications, holds five US patents and has been a principal investigator (PI) or co-PI on more than $21 million worth of funded projects from federal agencies and industry.

John Preskill named to White House National Quantum Initiative Advisory Committee

John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar, was named as a member of the National Quantum Initiative Advisory Committee (NQIAC). He will be providing assessments and recommendations for the National Quantum Initiative (NQI) Act.

John Preskill
John Preskill

The NQIAC, which is comprised of leaders in the field from industry, academia, and federal laboratories, is tasked with providing an independent assessment of the NQI Program and to make recommendations for the president, Congress, the National Science and Technology Council (NSTC) Subcommittee on Quantum Information Science, and the NSTC Subcommittee on Economic and Security Implications of Quantum Science when they’re reviewing and revising the NQI Program.

In the announcement, Preskill was cited for research contributions that include “proving security of quantum protocols, proposing and analyzing methods for reliable storage and processing of quantum information, identifying universal properties of quantum entanglement in quantum many-body systems, and applying quantum information theory to quantum gravity and black holes.”

In 2000, he founded Caltech’s Institute for Quantum Information, which is now the Institute for Quantum Information and Matter.

Preskill is a member of the National Academy of Sciences and an American Physical Society fellow.

Preskill joined Amazon Web Service’s quantum computing research effort in June 2020 as an Amazon Scholar.

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.