History of SCOT lead image.jpg
In a little over a decade, Amazon’s Supply Chain Optimization Technologies team (SCOT) has built one of the largest and most sophisticated automated decision-making systems in the world.

Solving some of the largest, most complex operations problems

How Amazon’s Supply Chain Optimization Technologies team has evolved over time to meet a challenge of staggering complexity.

Amazon’s ability to grow to an unprecedented scale, while simultaneously meeting the growing expectations of its customers, particularly around delivery speeds, is a success story on many levels.

One of the keys to that success is a team that is fundamental to Amazon’s increasingly rapid transformation. A largely unsung team that in little more than a decade has built one of the largest and most sophisticated automated decision-making systems in the world. A team that has harnessed simulation, mathematical optimization, and machine learning to create the capability to deliver products at speeds once thought impossible at the mass market scale — in some cases within 2 hours — across a fulfillment network of dizzying complexity.

This is Amazon’s Supply Chain Optimization Technologies team (SCOT). If the Amazon Store were a human body, think of SCOT as its nervous system: essential to life, quietly acting in the background to automatically optimize critical functions and flows.

“At SCOT, using science and technology to optimize the supply chain is not just an enabler, it's our core focus,” says Ashish Agiwal, vice president, Fulfillment Optimization.

Today, SCOT’s systems have end-to-end responsibility for orchestrating Amazon Store’s supply chain.

SCOT is responsible for computing the delivery promises Amazon Store customers see when ordering, forecasting demand for its hundreds of millions of products, deciding which products to stock and in what quantities, allocating stock to warehouses and fulfillment centers (FCs) in anticipation of regional customer needs, offering markdown pricing when necessary, working out how to consolidate customer orders for maximum efficiency, coordinating inbound and inventory management from millions of sellers worldwide, and so much more.

But it was not always thus. Far from it, says Deepak Bhatia, vice president of SCOT, whose team’s methodologies and mechanisms will be a topic of conversation at INFORMS, the world’s largest operations research and analytics conference, taking place next week in Indianapolis, Indiana.

“A very different world”

In 2011 when Bhatia joined Amazon, the team that would evolve into SCOT was much smaller, he recalls, and its main concern was trying to automate Amazon’s product buying and inventory management.

“It was a very different world. The notion of an end-to-end supply chain tech function wasn’t there. But there were powerful intellects and a lot of energy in that team.”

It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.
Deepak Bhatia

In 2011, Amazon’s total revenue reached nearly $48 billion, and it was already clear to the senior leadership that the company’s scale would require the automation of buying and the management of inventory; monitoring spreadsheets was not a long-term solution. Indeed, even then the sheer range of products offered by Amazon meant the “illusion of control” was already kicking in among the groups managing inventory, says Bhatia. In fact, Bhatia notes, the sheer complexity and scale meant the challenge was beyond the scope of any team, let alone an individual.

In response, Bhatia and his colleagues set out to develop complex algorithms that could make buying and inventory placement decisions for a given category of products. And while that was all well and good in theory, trying it for real was a watershed moment.

“It was a huge deal. Will it improve things, and if so by how much? Will it completely break? In the beginning, we took baby steps. We made changes one product category at a time.”

Media category products were the early adopters. In randomized, controlled trials that ran over several months, some of these products were managed in the traditional way, and some by the new algorithms. Crucially, human judgement could still override the system’s decisions if deemed necessary.

The trial went well — the algorithms’ decisions were overridden only a small percentage of the time — and the approach was expanded across additional categories, including consumables such as groceries.

Going all in

“Then one day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’, Bhatia recalls. “Someone responded ‘All hell will break loose’.” And that, Bhatia notes, is where Amazon’s comfort with risk-taking came into play. “They decided to go all in.” That was around 2014. And the systems worked as designed, improving customer experience outcomes like in-stock rates while reducing costs.

One day, in a high-level meeting someone said: ‘What if we go all in and make these categories 100% automated?’ Someone responded ‘All hell will break loose’.
Deepak Bhatia

“After this success, automating one product category at a time started to feel too risk-averse,” says Bhatia.

Over the next few years, the technology was rapidly rolled out across the retail business, all the while being iterated and improved upon, with increasing success in terms of efficiency and customer satisfaction. At the same time, the rapidly growing SCOT team was developing technologies that would enable them to join the dots from one end of the Amazon supply chain to the other.

For example, SCOT grew its own demand forecasting team, with a sharp focus on scientific and technological innovation. The forecasting aspect of SCOT’s work started out as a patchwork of models, which evolved eventually to deep learning approaches to decide what features of the retail data were most important.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

Today, building on a 2018 in-house research breakthrough, the forecasting team is using a single model that learns business-critical demand patterns without even being told what to look for. Called the Multi-Horizon Quantile Recurrent Forecaster, the model can accurately forecast shifting seasonal demand, future planned-event demand spikes and even “cold-start forecasting” for products with limited sales history.

Forecast accuracy is particularly important at Amazon’s scale.

“SCOT is directing hundreds of billions of dollars of product flows. That means just a few percentage points of change in our topline predictions equates to several fulfillment centers worth of products,” says Salal Humair, a SCOT vice president and Amazon distinguished scientist.

As SCOT’s demand forecasting has improved, so too has its ability to ensure that products were best positioned to fulfill those anticipated customer orders.

The challenge of One-Day Delivery

While Amazon’s largely manual inventory management system became increasingly automated in the early part of the previous decade, those changes proved insufficient for the logistical challenges that lay ahead: Amazon’s ever more ambitious customer-delivery promises, particularly its One-Day Delivery promise in the US in 2019, and Prime Now, Amazon's 2-hour grocery businesses.

“Before we announced the One-Day Delivery promise, a detailed SCOT simulation called Mechanical Sensei was the key to figuring out how much additional inventory we would need, where it would be placed, and how that would affect shipping costs,” says Humair.

So, at a time when Amazon was continuing to expand globally, the company’s bold delivery promises meant there was a pressing need to locate products closer to Amazon customers. This meant a significant increase in local distribution facilities, and yet another challenge: which items should be locally placed?

“Most of our systems were designed to operate under the simplifying assumption that demand for each item sold on the website is independent, but we know that’s not the case in reality,” says Jeffrey Maurer, vice president, Inventory Planning and Control. “When one product goes out of stock, or isn’t available for fast delivery, demand shifts to other products. We can’t make every product locally available in every location, so how do we account for these constraints while trying to maximize customer satisfaction?”

That nut has yet to be comprehensively cracked, but the simple fact of adding local warehousing resulted in a supply chain network of such layered complexity, that the SCOT team realized its automated network would need yet another radical redesign.

From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.
From left to right, Ashish Agiwal, vice president, Fulfillment Optimization; Deepak Bhatia, vice president of SCOT; Salal Humair, a SCOT vice president and Amazon distinguished scientist; Jeffrey Maurer, vice president, Inventory Planning and Control; and Piyush Saraogi, vice president, Fulfillment By Amazon.

It took them several years to solve for the new set of challenges.

“We had to iterate, fail, iterate, fail, iterate, fail many times,” Humair recalls.

Then, in 2020, the team unveiled its latest breakthrough: the “multi-echelon system”. This is a multi-product, multi-layered, multi-fulfillment center model for optimizing inventory levels for varying delivery speeds in a space where future demand, product lead times and capacity constraints are all uncertain, and where real-time customer promises and fulfillment make the demand patterns seen by FCs very hard to characterize.

“We have a strong sense of pride for the work the SCOT team is doing,” says Bhatia. “These sorts of solutions are just unheard of in academia and industry.”

The SCOT team was able to demonstrate significant improvements to inventory buying and placement through the multi-echelon system, but rolling it out across the business was a challenge.

“Not only did the teams, systems and coordination mechanisms all need to be rebuilt, but we also had to keep the business running,” says Humair. “We had to change the engine while still flying the plane!”

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

And then there was COVID. “The impact of COVID on our supply chain brought capacity management to the forefront,” says Maurer. “It was no longer enough to be approximately right at network level in terms of capacity management; we needed to get it exactly right at every facility and connection in our network.”

Ultimately, the successful combination of powerful forecasting, multi-echelon inventory management‚ and several other algorithms and systems — running the gamut from fulfillment to customer promise, inventory health, and inventory placement — along with unparalleled distribution capacity enabled Amazon to deal with the effects of COVID as well as the enormous surges in demand created by shopping events such as Cyber Monday and Amazon’s own Prime Day. The latter, this year, resulted in the record-breaking purchase of more than 300 million items across more than 20 countries.

Future challenges

So what are the current and future challenges in SCOT’s sights?

“The range of problems requiring disruptive technology solutions is not exhausted,” Humair notes.

For example, about 60% of the Amazon Store’s sales is through Fulfillment by Amazon (FBA), a service for small-and-medium sized businesses to provide unique selection for Amazon customers at low costs and fast speeds.

Optimizing supply chain efficiency would be hard enough at Amazon’s scale, even if Amazon was in full control of every aspect of its fulfillment network. “However we work with millions of FBA sellers with different cost structures and inventory management practices who independently decide what to sell, how much to inbound, and how to price their products,” notes Piyush Saraogi, vice president, FBA.

Related content
INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

These businesses share Amazon’s storage capacity and transportation network, but make their own decisions on pricing and inventory management. COVID played a role here as well: capacity constraints meant the FBA team had to adopt limits on restocking.

“Balancing the supply and demand of capacity in a network with 60% FBA inventory is an incredibly complex business problem,” Saraogi says. “To balance capacity in the marketplace setting, we have to invent new approaches that offer predictability to our sellers and are consistent with our general laissez-faire approach to FBA, while giving Amazon the flexibility to balance the network and ensure our store has all the in-stock selection customers are looking for.

Sellers may have developed a blockbuster new product, received fresh capital, or shifted distribution toward FBA. The science for leveraging this key seller input in a scalable manner into our inventory and capacity management systems is an unchartered territory that our scientists, engineers, and product managers are working on.”

“This is a big challenge for SCOT,” Bhatia agrees. “How can we support all our independent third-party sellers in ways that result in a triple win, for them, for Amazon, and for our customers?”

The SCOT team also wrestles with something that is increasingly prevalent in the modern world of complex optimization modelling and machine learning: how to explain automated decisions to the people who need to understand why things are happening as they are.

“We have hundreds of people fielding questions from selling partners and other stakeholders,” says Humair. “Why have my in-stock rates changed? Why do I have more inventory? Each such question requires manual deep dives, hundreds of person hours to answer.” The team is currently developing new methods to make its systems more explainable.

These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day
Ashish Agiwal

Indeed, the very fact that such technology is extremely complex and requires a sophisticated technical background to fully understand makes the idea of going all-in on data science a daunting proposition,” says Humair.

“Data is always ambiguous, so you need a lot of conviction and judgment to stay the course. But it has yielded spectacular benefits for Amazon, for our selling partners, and, most importantly, for our customers.”

Another big challenge is managing transportation through Amazon’s growing delivery fleet of trucks, planes, sort centers, and delivery stations. SCOT’s Fulfillment Optimization team, led by Agiwal, runs the systems that makes outbound fulfillment decisions.

“These systems optimize millions of customer promises every second and billions of customer order fulfillment plans daily. This is done by evaluating hundreds of millions of potential transport routes across the network and tracking over a billion real-time inventory updates every day,” he says.

Amazon’s operation of its own transportation network has created what Agiwal calls “a very exciting problem space” that his team is now addressing. “Designing the network topology, optimizing connections in a multi-tier multi-modal network, and coordinating all operational resources at Amazon scale is unprecedented,” he notes.

“Our new priority is ensuring that our own delivery trucks or cargo planes are as full as possible while also meeting our customer-delivery windows,” says Bhatia.

That problem space also illustrates why Amazon SCOT is so unique.

“We are solving some of the largest, most complex problems in operations using solutions entirely built in-house,” says Agiwal. “We have some of the best scientists, engineers and product managers in the world, working together and controlling their own destiny. We have the luxury of large and diverse data sets and the ability to innovate and experiment at a massive scale with immediate, measurable impact on customer experience and costs. It is truly gratifying.”

That complexity also explains why SCOT is so appealing to data scientists, economists, and machine learning scientists of all stripes.

“Our problem dimensionality is high and closed-form solutions are rarely applicable,” notes Maurer. “Our teams continually invent and implement new algorithms and evolve the fundamental structure of our systems as the physical network changes. SCOT is a great place for people who are drawn to exceptionally complex problem spaces and motivated by having high production impact.”

Related content

US, WA, Bellevue
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing groundbreaking products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team! Key job responsibilities * Design, develop, and evaluate highly innovative models for Natural Language Programming (NLP), Large Language Model (LLM), or Large Computer Vision Models. * Use SQL to query and analyze the data. * Use Python, Jupyter notebook, and Pytorch to train/test/deploy ML models. * Use machine learning and analytical techniques to create scalable solutions for business problems. * Research and implement novel machine learning and statistical approaches. * Mentor interns. * Work closely with data & software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan Learn more about our benefits here: https://amazon.jobs/en/internal/benefits/us-benefits-and-stock About the team When a customer returns a package to Amazon, the request and package will be passed through our WWRR machine learning (ML) systems so that we could improve the customer experience, identify return root cause, optimize re-use, and evaluate the returned package. Our problems touch multiple modalities spanning from: textual, categorical, image, to speech data. We operate at large scale and rely on state-of-the-art modeling techniques to power our ML models: XGBoost, BERT, Vision Transformers, Large Language Models.
US, CA, Santa Clara
Amazon CloudWatch is the native AWS monitoring and observability service for cloud resources and applications. We are seeking a talented Senior Applied Scientist to develop next-generation scientific methods and infrastructure to support a core AWS business that delivers critical services to millions of customers operating at scale. This is a high visibility and high impact role that work on highly strategic projects in the AI/ML and Analytics space, will interact with all levels of AWS leadership. We are developing solutions that not only surface the “what” but also the “why” and “how to fix it”, without requiring operators to have extensive domain knowledge and technical expertise to efficiently troubleshoot and remediate incidents. Using decades of AWS operational excellence coupled with the advances in LLMs and Gen-AI technologies, we are transforming the very core of how customers can effortlessly interact with our offerings to build and operate their applications in the cloud. We are hiring to grow our team, and are looking for well-rounded applied scientists with backgrounds in machine learning, foundation models, and natural language processing. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, mission driven team, then this is your moment to join us on this exciting journey! Key job responsibilities As an Applied Scientist II you will be responsible for * Research and development of algorithms that improve training of foundation models across pre-training, multitask learning, supervised finetuning, and reinforcement learning from human feedback * Research and development of novel approaches for anomaly detection, root cause analysis, and provide intelligent insights from vast amounts of monitoring and observability data * Collaborating with scientists, engineers, and Product Managers across CloudWatch team as well as directly with customers * Lead key science initiatives in strategic investment areas of AI/ML/LLM Ops and Observability * Be an industry thought leader representing Amazon at top-tier scientific conferences * Engaging in the hiring process and developing, growing, and mentoring junior scientists A day in the life Working closely with and across agile teams, you will be able to see and feel the impact of your work on our customers. This is a high visibility and high impact role that will interact with all levels of AWS leadership. Our ideal candidate is excited about the incredible opportunity that cloud monitoring represents and is deeply passionate about delivering the highest quality services leveraging AI/ML/LLMs. You’re naturally customer centric and thrive in a fast-paced environment that requires strong technical and business judgment and solid communication skills. About the team Amazon CloudWatch Logs is a core monitoring service used by millions of AWS customers. We move fast and have delivered remarkable products and features over the last few years to streamline how AWS customers troubleshoot their critical applications. Our mission is to be the most cost effective, integrated, fast, and secure logs management and analytics platform for AWS customers. We are a diverse group of product and engineering professionals that are passionate about delivering logging features that delight customers operating at any scale. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
NL, Amsterdam
Are you interested in creating a large business impact on millions of customers through the use of machine learning and analytics? We are seeking an Data Scientist to join our PriMA (Prime & Marketing) science team to model customer behavior, improve the engagement of our existing customers, and help us grow our customer base. In this role, you will collaborate with cross-functional teams and stakeholders to solve problems, and you will regularly interact with software engineering teams and business leadership. Some of the technical challenges you will contribute in this role are: - Measuring marketing campaigns across external marketing channels (Youtube, TikTok, Google,....) - Modeling the causal impact that some actions have over customers. - Building better product recommendation for deals and promotions at Amazon Key job responsibilities - Develop accurate and scalable data science models to address business use cases ranging from: analyzing customer behavior, building recommender systems to increase engagement, or measuring the impact of marketing channels. - Partner with engineers and applied scientists to implement data science solutions for complex business problems, guiding the application of best practices in data analysis, statistical modeling, and machine learning. - Lead comprehensive data analyses to provide insights and recommendations that help management and business stakeholders make key strategic decisions. About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 50 people (comprising other job families like SDEs) that gives support to all the tech needs of the Prime & marketing org.
BR, SP, Sao Paulo
Esta é uma posição de colaborador individual, com base em nosso escritório de São Paulo. Procuramos uma pessoa dinâmica, analítica, inovadora, orientada para a prática e com foco inabalável no cliente. Na Amazon, nosso objetivo é exceder as expectativas dos clientes, garantindo que seus pedidos sejam entregues com máxima rapidez, precisão e eficiência de custo. A determinação da rota de cada pacote é realizada por sistemas complexos, que precisam acompanhar o crescimento acelerado e a complexidade da malha logística no Brasil. Diante desse cenário, a equipe de Otimização de Supply Chain está à procura de um cientista de dados experiente, capaz de desenvolver modelos, ferramentas e processos para garantir confiabilidade, agilidade, eficiência de custos e a melhor utilização dos ativos. O candidato ideal terá sólidas habilidades quantitativas e experiência com conjuntos de dados complexos, sendo capaz de identificar tendências, inovar processos e tomar decisões baseadas em dados, considerando a cadeia de suprimentos de ponta a ponta. Key job responsibilities * Executar projetos de melhoria contínua na malha logística, aproveitando boas práticas de outros países e/ou desenvolvendo novos modelos. * Desenvolver modelos de otimização e cenários para planejamentos logísticos. * Criar modelos de otimização voltados para a execução de eventos e períodos de alta demanda. Automatizar processos manuais para melhorar a produtividade da equipe. * Auditar operações, configurações sistêmicas e processos que possam impactar custos, produtividade e velocidade de entregas. * Realizar benchmarks com outros países para identificar melhores práticas e processos avançados, conectando-os às operações no Brasil. About the team Nosso time é composto por engenheiros de dados, gerentes de projetos e cientistas de dados, todos dedicados a criar soluções escaláveis e inovadoras que suportem e otimizem as operações logísticas da Amazon no Brasil. Nossa missão é garantir a eficiência de todas as etapas da cadeia de suprimentos, desde a primeira até a última milha, ajudando a Amazon a entregar resultados com agilidade, precisão e a um custo competitivo, especialmente em um ambiente de rápido crescimento e complexidade.
US, CA, San Francisco
We are hiring an Economist with the ability to disambiguate very challenging structural problems in two and multi-sided markets. The right hire will be able to get dirty with the data to come up with stylized facts, build reduced form model that motivate structural assumptions, and build to more complex structural models. The main use case will be understanding the incremental effects of subsidies to a two sided market relate to sales motions characterized by principal agent problems. Key job responsibilities This role with interface directly with product owners, scientists/economists, and leadership to create multi-year research agendas that drive step change growth for the business. The role will also be an important collaborator with other science teams at AWS. A day in the life Our team takes big swings and works on hard cross organizational problems where the optimal success rate is not 100%. We also ask people to grow their skills and stretch and make sure we do it in a supportive and fun environment. It’s about empirically measured impact, advancement, and fun on our team. We work hard during work hours but we also don’t encourage working at nights or on weekends except in very rare, high stakes cases. Burn out isn’t a successful long run strategy. Because we invest in the long run success of our group it’s important to have hobbies, relax and then come to work refreshed and excited. It makes for bigger impact, faster skill accrual and thus career advancement. About the team Our group is technically rigorous and encourages ongoing academic conference participation and publication. Our leaders are here for you and to enable you to be successful. We believe in being servant leaders focused on influence: good data work has little value if it doesn’t translate into actionable insights that are rolled out and impact the real economy. We are communication centric since being able to explain what we do ensures high success rates and lowers administrative churn. Also: we laugh a lot. If it’s not fun, what’s the point?
US, CA, San Diego
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. As an Applied Scientist, you will be working closely with a team of applied scientists and engineers to build systems that shape the future of Amazon's by automatically generating relevant content and building a whole page experience that is coherent, dynamic, and interesting. You will improve ranking and optimization in our algorithm. You will participate in driving features from idea to deployment, and your work will directly impact millions of customers.
US, WA, Seattle
Amazon is the 4th most popular site in the US. Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include: - Can combining supervised multi-task training with unsupervised training help us to improve model accuracy? - Can we transfer our knowledge of the customer to every language and every locale ? - Can we build foundational ML models that can serve different business lines. This is a unique opportunity to get in on the ground floor, shape, and build the next-generation of Amazon ML. We are looking for exceptional scientists and ML engineers who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization. Key job responsibilities Train large deep learning models with hundreds of billions parameters. Build foundational ML models that can be applied to different business applications in Amazon such as Search and Ads. Areas of interest include efficient model architecture, training and data optimization/scaling, model/data/pipeline parallel techniques, and much more.
US, WA, Bellevue
Ring is looking for a Senior Applied Science Manager to lead the development of computer vision algorithm on the Edge. In this role, you will be the leader of our passionate, talented, and inventive scientists, to develop industry-leading Computer Vision (CV), Multimodal, and AI and drive them successfully to production for the benefit of millions of Amazon Devices users. This is a unique, high visibility opportunity for a leader who wants to have business impact, and dive deep into computer vision problems. We are particularly interested in candidates with experience productizing edge-based computer vision systems. Key job responsibilities As a Senior Manager, Applied Science, you bring structure to ambiguous business problems and use science, logic, and practical experience to decompose them into straightforward, scalable solutions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems; you're interested in learning; and you acquire skills and expertise as needed. The ideal candidate is a strong, creative and highly-motivated Scientist with hands-on experience in leading multiple research and engineering initiatives. You balance technical leadership with strong business judgment to make the right decisions about technology, tools, and methodologies.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.