Image shows the 2022 F1 car sitting in profile on a racetrack with viewing stands in the background
The F1 engineering team collaborated with AWS to explore the science of how cars interact when racing in close proximity.
F1

The science behind the next-gen FORMULA 1 car

Learn how the F1 engineering team collaborated with AWS to develop new design specifications to help make races more competitive.

When the 2022 FORMULA 1 (F1) racing season revs up in March, teams will take to the track with newly designed cars engineered to give fans — and drivers — more of the wheel-to-wheel action they’ve been seeking.

“Anybody who has followed the sport has heard drivers complain on the radio about not being able to get close enough to the car in front of them,” explains Simon Dodman, principal aerodynamicist at F1. “Essentially what they're reporting in those situations is a lack of grip, or downforce.”

Anybody who has followed the sport has heard drivers complain on the radio about not being able to get close enough to the car in front of them. What they're reporting in those situations is a lack of grip, or downforce.
Simon Dodman

F1 cars are the fastest regulated road-course racing vehicles in the world. While these open-wheel automobiles are only 20 to 30 kilometers (or 12 to 18 miles) per-hour faster than top-of-the-line sports cars, they can speed around corners up to five times as fast due to the powerful aerodynamic downforce they create. Much like the way that aircraft generate lift through their wings, F1 cars use a similar mechanism, except inverted, to generate the downforce they need.

Cars lose up to 50% of this downforce when racing closely behind another car due to the turbulent wake generated by wings and bodywork. Turbulence from the leading car causes the trailing car to slide and lose its grip on the track. The driver behind senses a loss of grip earlier than the driver in front and, ultimately, has to take his foot off the accelerator.

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

“This loss of downforce means that even the best drivers in the world can’t overtake the car in front of them, ” says Neil Ashton, a former FORMULA 1 engineer who today is principal computational fluid dynamics (CFD) specialist for Amazon Web Services (AWS).

“It's as simple as an object moving through a fluid — whether that's air or water — and creating a disturbance behind it,” Dodman adds. “Think of a speedboat rushing by on a completely calm lake. Basically, cars do the same through air. The faster cars go, the more downforce they make, and the bigger the wake behind them becomes. And wake is detrimental to what’s behind it. Imagine trying to drive a speedboat behind another speedboat and bouncing around in the water — it’s the same with race cars.”

"Nobody designs a car to come in second"

Over the past three years, the F1 engineering team has collaborated with AWS to explore the science of how cars interact when racing in close proximity and, ultimately, develop new design specifications to deliver a more competitive racing spectacle for fans while keeping drivers safe.

“One criticism often leveled against FORMULA 1 is that, at times, it can be processional and easy to predict who will win on a given race weekend by virtue of the fact that it's quite a cyclical sport in terms of competitiveness,” Dodman said. “Fans want to watch an exciting race with lots of overtaking and, quite simply, the sport hasn’t delivered that. We recognized things had to change to level the playing field and deliver a more compelling spectator experience.”

2022 F1 Car option 1.jpg
Instead of relying on time-consuming and costly physical tests, F1 used computational fluid dynamics, which provides a virtual environment to study the flow of fluids, to help design the 2022 F1 car seen here.
F1

The F1 engineering team was tasked with designing a car that can produce a smaller wake, while maintaining the degree of downforce and peak speeds, but is also not adversely affected by driving through another car’s wake.

“Nobody designs a car to come in second,” observes Pat Symonds, chief technical officer at FORMULA 1. “But for this project, we were looking at how cars perform in the wake of another car, as opposed to running in clean air.”

Instead of relying on time-consuming and costly physical tests, F1 used computational fluid dynamics, which provides a virtual environment to study the flow of fluids (in this case the air around the F1 car) without ever having to manufacture a single part. By numerically solving a form of the Navier-Stokes equations, companies like FORMULA 1 can study the complex nature of turbulent flows from their laptops.

"A lot of complex physics"

“There are a lot of complex physics involved with how a F1 car moves around a corner, which creates a massive computational challenge with a huge matrix of scenarios,” Ashton said. “This meant that F1 needed access to very large high performance computing (HPC) resources.”

F1's Rob Smedley on using AWS to improve the fan experience

The project kicked off with F1 using CFD at a third-party facility, which meant sharing capacity with other customers and, as a result, limiting the quantity and quality of simulations. Dodman’s team ultimately transitioned to a HPC platform on AWS, using AWS ParallelCluster and a combination of Amazon Elastic Compute Cloud (Amazon EC2) instances including AWS Graviton2-based C6gn instances to run complex simulations modeling the turbulence wake of cars and the impact on trailing cars.

“Moving to AWS enabled us to break away from that serial model and run lots of cases at once without having to queue behind other customers,” Dodman said.This meant the time between receiving and analyzing results and moving to the next step was much shorter. We were able to shortcut a lot of the process.”

Customers use AWS for CFD projects to design everything from aircraft to medical devices. While the most powerful desktops have around 64 processing cores, F1 engineers had access to more than 2,500 AWS cores for every run — often with many jobs running simultaneously.

Image shows an overhead of the right panel of the front wing of the 2022 F1 car, the panel and car are iridescent
The new 2022 F1 car includes a simplified front wing that diverts airflow off the front wheels.
F1

“We quickly realized that the only way we were going to make inroads was to do as many simulations using CFD as possible,” Dodman said. “By using the hugely scalable compute resource AWS offers, we were able to do far more runs and come to conclusions and solutions a lot faster.”

Running the project with AWS removed all barriers related to time and computing capacity, reducing the average simulation run time from 60 hours to 12. It also reduced the cost of running workloads by 30%, delivering supercomputer-level performance for a fraction of the budget.

F1 originally planned to run 20 or 30 simulations a week, but was able to increase that to between 80 and 90 with AWS. “And with access to much more compute resources than even the [F1 racing] teams have, we're able to run two-car simulations and look at the problem in a way that has never been done before,” Dodman added.

Massive data

AWS enabled F1 to run more than 5,000 single- and multi-car simulations over six months, yielding 550 million data points. These insights led to Fédération Internationale de l'Automobile (FIA is the governing body of motor sport) design specifications for a next-gen car with only 15% downforce loss at a one-car-length distance. F1 teams are currently using the regulations to design cars for the 2022 season.

We're confident drivers will be able to race more closely, with potential for far more overtaking.
Simon Dodman

New robust aerodynamic features include wheel wake control devices; a simplified front wing that diverts airflow off the front wheels; a more sculpted rear wing to effectively draw air in from the sides and lift it above the car following behind; simplified suspension; and underfloor tunnels. For the first time, all F1 cars will run on 18-inch wheels (up from 13 inches) with low-profile tires.

This will reduce turbulent airflow from the car ahead, increasing downforce of the following car, and allowing it to close the gap and potentially overtake the leader.

“The new design lifts a car’s wake higher so the following car can drive under it rather than through it,” Dodman said. “We're confident drivers will be able to race more closely, with potential for far more overtaking. And with less distance between the fastest and slowest cars on the track, we see more opportunity for different teams to win week to week.”

F1 2022 - SILVERSTONE - front low angle.jpg
The 2022 F1 car features simplified suspension, underfloor tunnels and, for the first time, all F1 cars will run on 18-inch wheels (up from 13 inches) with low-profile tires.
F1

F1 tested and verified the new design in a wind tunnel. “They found the correlation between the simulation data and the test was very good, which proved that you can do a complicated, high-fidelity engineering design project in CFD,” Ashton said.

F1 are now starting the process of looking into AWS machine learning services such as Amazon SageMaker to help to optimize the design and performance of the car by using the simulation data to build models with additional insights.

“It’s still early days,” Ashton concluded, “but machine learning is proving to be a compelling additional reason to collaborate with AWS and I’m excited to see what we can achieve together.”

Research areas

Related content

US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
US, WA, Bellevue
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing groundbreaking products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team! Key job responsibilities * Design, develop, and evaluate highly innovative models for Natural Language Programming (NLP), Large Language Model (LLM), or Large Computer Vision Models. * Use SQL to query and analyze the data. * Use Python, Jupyter notebook, and Pytorch to train/test/deploy ML models. * Use machine learning and analytical techniques to create scalable solutions for business problems. * Research and implement novel machine learning and statistical approaches. * Mentor interns. * Work closely with data & software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan Learn more about our benefits here: https://amazon.jobs/en/internal/benefits/us-benefits-and-stock About the team When a customer returns a package to Amazon, the request and package will be passed through our WWRR machine learning (ML) systems so that we could improve the customer experience, identify return root cause, optimize re-use, and evaluate the returned package. Our problems touch multiple modalities spanning from: textual, categorical, image, to speech data. We operate at large scale and rely on state-of-the-art modeling techniques to power our ML models: XGBoost, BERT, Vision Transformers, Large Language Models.
US, CA, Santa Clara
Amazon CloudWatch is the native AWS monitoring and observability service for cloud resources and applications. We are seeking a talented Senior Applied Scientist to develop next-generation scientific methods and infrastructure to support a core AWS business that delivers critical services to millions of customers operating at scale. This is a high visibility and high impact role that work on highly strategic projects in the AI/ML and Analytics space, will interact with all levels of AWS leadership. We are developing solutions that not only surface the “what” but also the “why” and “how to fix it”, without requiring operators to have extensive domain knowledge and technical expertise to efficiently troubleshoot and remediate incidents. Using decades of AWS operational excellence coupled with the advances in LLMs and Gen-AI technologies, we are transforming the very core of how customers can effortlessly interact with our offerings to build and operate their applications in the cloud. We are hiring to grow our team, and are looking for well-rounded applied scientists with backgrounds in machine learning, foundation models, and natural language processing. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, mission driven team, then this is your moment to join us on this exciting journey! Key job responsibilities As an Applied Scientist II you will be responsible for * Research and development of algorithms that improve training of foundation models across pre-training, multitask learning, supervised finetuning, and reinforcement learning from human feedback * Research and development of novel approaches for anomaly detection, root cause analysis, and provide intelligent insights from vast amounts of monitoring and observability data * Collaborating with scientists, engineers, and Product Managers across CloudWatch team as well as directly with customers * Lead key science initiatives in strategic investment areas of AI/ML/LLM Ops and Observability * Be an industry thought leader representing Amazon at top-tier scientific conferences * Engaging in the hiring process and developing, growing, and mentoring junior scientists A day in the life Working closely with and across agile teams, you will be able to see and feel the impact of your work on our customers. This is a high visibility and high impact role that will interact with all levels of AWS leadership. Our ideal candidate is excited about the incredible opportunity that cloud monitoring represents and is deeply passionate about delivering the highest quality services leveraging AI/ML/LLMs. You’re naturally customer centric and thrive in a fast-paced environment that requires strong technical and business judgment and solid communication skills. About the team Amazon CloudWatch Logs is a core monitoring service used by millions of AWS customers. We move fast and have delivered remarkable products and features over the last few years to streamline how AWS customers troubleshoot their critical applications. Our mission is to be the most cost effective, integrated, fast, and secure logs management and analytics platform for AWS customers. We are a diverse group of product and engineering professionals that are passionate about delivering logging features that delight customers operating at any scale. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
"We see our customers as invited guests to a party, and we are the hosts. It's our job every day to make every important aspect of the customer experience a little bit better." - Jeff Bezos, Founder & CEO. We didn’t make Amazon a trillion-dollar company, our customers did and we want to ensure that our customers always have a positive experience that keeps them coming back to Amazon. To help achieve this, the Worldwide Defect Elimination (WWDE) team, within Amazon Customer Service (CS), relentlessly focuses on maintaining customer trust by building products that offer appropriate resolutions to resolve issues faced by our customers. WWDE scientists solve complex problems and build scalable solutions to help our customers navigate through issues and eliminate systemic defects to prevent future issues. As a Research Scientist, your role is pivotal in leveraging advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques to address customer issues at scale. You'll develop innovative solutions that summarize and detect issues, organize them using taxonomy, and pinpoint root causes within Amazon systems. Your expertise will drive the identification of responsible stakeholders and enable swift resolution. Utilizing the latest techniques, you will build an AI ecosystem that can efficiently comb over our billions of customer interactions (using a combination of media). As a part of this role, you will collaborate with a large team of experts in the field and move the state of defect elimination research forward. You should have a knack for leveraging AI to translate complex data insights into actionable strategies and can communicate these effectively to both technical and non-technical audiences. Key job responsibilities - Develop ML/GenAI-powered solutions for automating defect elimination workflows - Design and implement robust metrics to evaluate the effectiveness of ML/AI models - Perform statistical analyses and statistical tests, including hypothesis testing and A/B testing - Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: - Medical, Dental, and Vision Coverage - Maternity and Parental Leave Options - Paid Time Off (PTO) - 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply.
BR, SP, Sao Paulo
Esta é uma posição de colaborador individual, com base em nosso escritório de São Paulo. Procuramos uma pessoa dinâmica, analítica, inovadora, orientada para a prática e com foco inabalável no cliente. Na Amazon, nosso objetivo é exceder as expectativas dos clientes, garantindo que seus pedidos sejam entregues com máxima rapidez, precisão e eficiência de custo. A determinação da rota de cada pacote é realizada por sistemas complexos, que precisam acompanhar o crescimento acelerado e a complexidade da malha logística no Brasil. Diante desse cenário, a equipe de Otimização de Supply Chain está à procura de um cientista de dados experiente, capaz de desenvolver modelos, ferramentas e processos para garantir confiabilidade, agilidade, eficiência de custos e a melhor utilização dos ativos. O candidato ideal terá sólidas habilidades quantitativas e experiência com conjuntos de dados complexos, sendo capaz de identificar tendências, inovar processos e tomar decisões baseadas em dados, considerando a cadeia de suprimentos de ponta a ponta. Key job responsibilities * Executar projetos de melhoria contínua na malha logística, aproveitando boas práticas de outros países e/ou desenvolvendo novos modelos. * Desenvolver modelos de otimização e cenários para planejamentos logísticos. * Criar modelos de otimização voltados para a execução de eventos e períodos de alta demanda. Automatizar processos manuais para melhorar a produtividade da equipe. * Auditar operações, configurações sistêmicas e processos que possam impactar custos, produtividade e velocidade de entregas. * Realizar benchmarks com outros países para identificar melhores práticas e processos avançados, conectando-os às operações no Brasil. About the team Nosso time é composto por engenheiros de dados, gerentes de projetos e cientistas de dados, todos dedicados a criar soluções escaláveis e inovadoras que suportem e otimizem as operações logísticas da Amazon no Brasil. Nossa missão é garantir a eficiência de todas as etapas da cadeia de suprimentos, desde a primeira até a última milha, ajudando a Amazon a entregar resultados com agilidade, precisão e a um custo competitivo, especialmente em um ambiente de rápido crescimento e complexidade.
US, CA, San Francisco
We are hiring an Economist with the ability to disambiguate very challenging structural problems in two and multi-sided markets. The right hire will be able to get dirty with the data to come up with stylized facts, build reduced form model that motivate structural assumptions, and build to more complex structural models. The main use case will be understanding the incremental effects of subsidies to a two sided market relate to sales motions characterized by principal agent problems. Key job responsibilities This role with interface directly with product owners, scientists/economists, and leadership to create multi-year research agendas that drive step change growth for the business. The role will also be an important collaborator with other science teams at AWS. A day in the life Our team takes big swings and works on hard cross organizational problems where the optimal success rate is not 100%. We also ask people to grow their skills and stretch and make sure we do it in a supportive and fun environment. It’s about empirically measured impact, advancement, and fun on our team. We work hard during work hours but we also don’t encourage working at nights or on weekends except in very rare, high stakes cases. Burn out isn’t a successful long run strategy. Because we invest in the long run success of our group it’s important to have hobbies, relax and then come to work refreshed and excited. It makes for bigger impact, faster skill accrual and thus career advancement. About the team Our group is technically rigorous and encourages ongoing academic conference participation and publication. Our leaders are here for you and to enable you to be successful. We believe in being servant leaders focused on influence: good data work has little value if it doesn’t translate into actionable insights that are rolled out and impact the real economy. We are communication centric since being able to explain what we do ensures high success rates and lowers administrative churn. Also: we laugh a lot. If it’s not fun, what’s the point?
US, WA, Seattle
This is a unique opportunity to join a small, high-impact team working on AI agents for health initiatives. You will lead the crucial data foundation of our project, managing health data acquisition, processing, and model evaluation, while also contributing to machine learning model development. Your work will directly influence the creation and improvement of AI solutions that could significantly impact how individuals manage their daily health and long-term wellness goals. If you're passionate about leveraging data and developing ML models to solve meaningful problems in healthcare through AI, this role is for you. You'll work on large-scale data processing, design annotation workflows, develop evaluation metrics, and contribute to the machine learning algorithms that drive the performance of our health AI agents. You'll have the chance to innovate alongside healthcare experts and data scientists. In this early-stage initiative, you'll have significant influence on our data strategies and ML approaches, shaping how they drive our AI solutions. This is an excellent opportunity for a high-judgment data scientist with ML expertise to demonstrate impact and make key decisions that will form the backbone of our health AI initiatives. Key job responsibilities Be the complete owner for health data acquisition, processing, and quality assurance Design and oversee data annotation workflows Collaborate on data sourcing strategies Lead health data acquisition and processing initiatives Manage AI agent example annotation processes Develop and implement data evaluation metrics Design, implement, and evaluate machine learning models for AI agents, with a focus on improving natural language understanding and generation in health contexts A day in the life You'll work with a cross-disciplinary team to source, evaluate, and leverage health data for AI agent development. You'll shape data acquisition strategies, annotation workflows, and machine learning models to enhance our AI's health knowledge. Expect to dive deep into complex health datasets, challenge conventional data evaluation metrics, and continuously refine our AI agents' ability to understand and respond to health-related queries.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
US, CA, San Diego
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. As an Applied Scientist, you will be working closely with a team of applied scientists and engineers to build systems that shape the future of Amazon's by automatically generating relevant content and building a whole page experience that is coherent, dynamic, and interesting. You will improve ranking and optimization in our algorithm. You will participate in driving features from idea to deployment, and your work will directly impact millions of customers.
US, WA, Seattle
Amazon is the 4th most popular site in the US. Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include: - Can combining supervised multi-task training with unsupervised training help us to improve model accuracy? - Can we transfer our knowledge of the customer to every language and every locale ? - Can we build foundational ML models that can serve different business lines. This is a unique opportunity to get in on the ground floor, shape, and build the next-generation of Amazon ML. We are looking for exceptional scientists and ML engineers who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization. Key job responsibilities Train large deep learning models with hundreds of billions parameters. Build foundational ML models that can be applied to different business applications in Amazon such as Search and Ads. Areas of interest include efficient model architecture, training and data optimization/scaling, model/data/pipeline parallel techniques, and much more.