An Amazon employee is seen making a delivery while an electric delivery van is parked behind him on a residential street in Los Angeles
When Amazon announced it would purchase 100,000 custom electric delivery vehicles, a team of scientists within the Amazon Logistics Research organization took on the challenge of determining the best strategy for deploying them.
About Amazon

The science of operations planning under uncertainty

How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

When Amazon announced it would purchase 100,000 custom electric delivery vehicles as part of The Climate Pledge, a team of scientists within the Amazon Logistics (AMZL) Research organization took on the challenge of determining the best strategy for deploying them. Based on sophisticated models that simulate Amazon’s shipments and external parameters like power availability in each city, the team is developing a plan to gradually electrify Amazon’s entire fleet.

This is just one of many projects the AMZL Research Science team is tackling related to last-mile delivery. Last mile, as the name implies, is the last leg of the journey of a product to a customer’s doorstep. The team develops models to predict shipments per route (SPR) and distribution, which is the average number of packages delivered by a single driver in a given city on a given day (weeks to years in the future). These models help to predict the number and the different sizes of vans the company should purchase to meet the predicted demands.

“With these complex models we develop, we have been influencing the company’s investment in vehicles, Delivery Service Partners, and their drivers,” says Rohit Malshe, a principal research scientist at Amazon.

How to forecast when everything is changing

There are multiple scientific challenges involved in developing these models given the dynamic nature of Amazon’s operations.

“One of these challenges is that our volume keeps growing. In general, as the volume grows, the shipments per route will also increase, but not linearly,” explains Abhilasha Katariya, a senior research scientist on the team. New delivery stations are frequently launched, leading to several changes in the geographical area that each station covers. Stations may incorporate different types of vehicles and modify their operation hours, which also impacts how much they can deliver. Additionally, road networks are subject to alterations as well, impacting driving time.

Left to right, Rohit Malshe, principal research scientist; Abhilasha Katariya, senior research scientist; and Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University, are all part of the Amazon Logistics Research Science team.
Left to right, Rohit Malshe, principal research scientist; Abhilasha Katariya, senior research scientist; and Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University, are all part of the Amazon Logistics Research Science team.

The team’s scientists must develop models that can handle the variability and complexity. To do that, they use a bottoms-up approach that starts at the zip code level. “This creates a foundation where any changes in the stations’ jurisdiction can be taken into consideration directly,” says Katariya.

Pure machine-learning approaches are not adequate because the team must frequently make predictions based on new scenarios, for which there is no training data available. To compensate for the lack of training data, the team develops models that combine machine learning and physics-based models that have an optimization component which helps to take into account new variables.

For example, if a large van is added to an Amazon station that previously only worked with small and medium vans, there is no training data to inform the model. “But because the core of the model uses analytical and optimization components, we can still predict the shipments per route for a larger van,” says Katariya.

“If you think about a machine learning model, typically interpolating is very easy. But, in our case, we typically want to extrapolate because we're always getting more volume,” says Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University. “Using historical data to extrapolate is generally not recommended in machine learning, because you haven’t seen those things in the past.”

This is where the physics-based model comes in handy, although a pure physics-based model also wouldn’t work, notes Gautam, because there are so many simplifying assumptions that need to be made to obtain an analytically tractable model. “We want to get the best of both worlds, in some sense. We all want something that adequately represents what is observed, but we also want to be able to extrapolate when not observed.”

Another strategy the team employs to deal with situations where the parameters are constantly changing is to run the same model over and over again to do a type of course correction. “Just run the model every month, so that all the parameters that are changing are learned by the model, and then you are always getting the latest and greatest picture you should expect. This way you have a good model that handles all types of situations, even the ones where no data exists,” says Malshe.

The science team works very closely with people on the ground, both in station and on the road, to perfect these models. They frequently visit the delivery stations and interview the drivers whenever an opportunity arrives. “We make visits to stations and do ride-alongs so that we stay connected with how the business is evolving,” says Katariya.  

In one of these meetings, Gautam says, station employees said their results were different from what the models were predicting. “We went back to the drawing board, looked at the code and the data they were getting ,and took a deep dive to find what was causing the problem”.

They realized the station started delivering to a new zip code, but it didn’t perform the same way the previous station did. That explained the difference between what the model was observing and the real-life data. Having a close connection with operations allowed them to identify the problem and adjust their model.

Dealing with COVID-19 disruptions

For big decisions like vehicle purchases, the AMZL Research Science team forecasts on a 16-month horizon. However, when the team predicted the number of vans needed for 2020, their model didn’t consider the COVID-19 pandemic. “Suddenly there was so much more package demand that all our forecasts were basically incorrect,” says Malshe.

An Amazon employee loads an electric delivery van inside a delivery station in Los Angeles.
For big decisions like vehicle purchases, the AMZL Research Science team forecasts on a 16-month horizon.
About Amazon

He says, when situations like these arise, the first thing the team does is to upgrade the forecasts to incorporate the additional volume. They also perform scenario analyses to check, for example, if the vehicles that had already been budgeted and procured would serve the purpose. Fortunately, in this case, because these decisions are made so far in advance, the team intentionally overbudgeted to account for uncertainties. “Luckily enough, the previous year, we had spent a lot of money on bigger vehicles, and they were able to absorb the additional package volume. So, when we ran these forecasts, we figured out we were in a good spot to be able to handle such changes,” says Malshe.

“Another risk mitigation lever we applied is to make sure there is enough storage space in the delivery stations,” says Malshe. “We made sure we looked into every possible parameter to optimize for vehicles and their placement in various cities, and their deployment to various Delivery Service Partner companies so that they are utilized to the best of our capabilities.”

‘Many challenges and interesting solutions’

The electrification of Amazon’s fleet presents its own set of challenges. Some of these include how to make sure batteries in the vehicles don’t run out of charge on the road; how to optimize electricity and power consumption; and how to account for extreme weather, long trips and hilly areas. “We will keep learning on all of these items as we go forward, and each year we will come up with more innovations to overcome any barriers,” says Malshe.  

For Malshe, the diversity of the scientists working on the team – which includes people with various backgrounds, industries, educations, and skill sets – is what contributes to its success in tackling these unresolved challenges.

"We have people on our team who are extremely data savvy.  We have team members who know  SQL coding in depth and some are extremely good in Python coding. Other team members have expertise in areas like machine learning, optimization, pure modeling, Monte Carlo simulations and what not," says Malshe, who is himself a chemical engineer with experience in logistics.

 “Usually two to three people are working on every project. It divides and conquers various tasks and ultimately gives everyone an opportunity to do valuable work,” he says.

In addition to the team’s range of expertise, Katariya says another team success factor is its ability to collaborate on a wide range of problems. “Each problem has a different challenge, some have a very simple mathematical solution, but are very heavy on the implementation side, and others may require more complex models from a mathematical perspective, but are easier to implement.”

And there are many more challenges to be tackled. In fact, Gautam says, some of his peers have yet to fully grasp the challenges involved in this field of research.

“A lot of people think of last mile as solving a vehicle routing problem. But we do a lot more than that,” he says. “There are so many challenges and interesting solutions that you just can’t take it off the shelf, you really have to invent as you go along. There are tremendous opportunities to do that here and the range of challenges we get to address is what makes being involved with this team so professionally rewarding.”

The team is currently hiring research and data scientists and is looking for experienced researchers to consider applying.

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, NY, New York
We are seeking a motivated and talented Applied Scientist to join our team at Amazon Advertising, where we are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping beautiful, delightful, and personal. Our team builds the central Brand Understanding foundation for Amazon ads and beyond. We focus on enabling the Amazon brand ads businesses to align the customer's brand shopping intent with the brand's unique value (e.g., intelligent query/shopper-to-brand understanding, brand value/differentiator attribute extraction, and brand profile building). We provide large-scale offline and online Brand Understanding data services, powered by the latest Machine Learning technologies (e.g., Large Language Models, Multi-Modal Deep Neural Networks, Statistical Modeling). We also enable customer-brand engagement enhancement through intelligent UX and efficient ads serving. About Amazon Advertising: Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. Key job responsibilities - Leverage Large Language Models (LLMs) and transformer-based models, and apply machine learning and natural language understanding techniques to improve the shopper and advertiser experience at Amazon. - Perform hands-on data analysis and modeling with large data sets to develop insights. - Run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Be a member of the Amazon-wide machine learning community, participating in internal and external hackathons and conferences - Help attract and recruit technical talent
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).