An Amazon employee is seen making a delivery while an electric delivery van is parked behind him on a residential street in Los Angeles
When Amazon announced it would purchase 100,000 custom electric delivery vehicles, a team of scientists within the Amazon Logistics Research organization took on the challenge of determining the best strategy for deploying them.
About Amazon

The science of operations planning under uncertainty

How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

When Amazon announced it would purchase 100,000 custom electric delivery vehicles as part of The Climate Pledge, a team of scientists within the Amazon Logistics (AMZL) Research organization took on the challenge of determining the best strategy for deploying them. Based on sophisticated models that simulate Amazon’s shipments and external parameters like power availability in each city, the team is developing a plan to gradually electrify Amazon’s entire fleet.

This is just one of many projects the AMZL Research Science team is tackling related to last-mile delivery. Last mile, as the name implies, is the last leg of the journey of a product to a customer’s doorstep. The team develops models to predict shipments per route (SPR) and distribution, which is the average number of packages delivered by a single driver in a given city on a given day (weeks to years in the future). These models help to predict the number and the different sizes of vans the company should purchase to meet the predicted demands.

“With these complex models we develop, we have been influencing the company’s investment in vehicles, Delivery Service Partners, and their drivers,” says Rohit Malshe, a principal research scientist at Amazon.

How to forecast when everything is changing

There are multiple scientific challenges involved in developing these models given the dynamic nature of Amazon’s operations.

“One of these challenges is that our volume keeps growing. In general, as the volume grows, the shipments per route will also increase, but not linearly,” explains Abhilasha Katariya, a senior research scientist on the team. New delivery stations are frequently launched, leading to several changes in the geographical area that each station covers. Stations may incorporate different types of vehicles and modify their operation hours, which also impacts how much they can deliver. Additionally, road networks are subject to alterations as well, impacting driving time.

Left to right, Rohit Malshe, principal research scientist; Abhilasha Katariya, senior research scientist; and Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University, are all part of the Amazon Logistics Research Science team.
Left to right, Rohit Malshe, principal research scientist; Abhilasha Katariya, senior research scientist; and Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University, are all part of the Amazon Logistics Research Science team.

The team’s scientists must develop models that can handle the variability and complexity. To do that, they use a bottoms-up approach that starts at the zip code level. “This creates a foundation where any changes in the stations’ jurisdiction can be taken into consideration directly,” says Katariya.

Pure machine-learning approaches are not adequate because the team must frequently make predictions based on new scenarios, for which there is no training data available. To compensate for the lack of training data, the team develops models that combine machine learning and physics-based models that have an optimization component which helps to take into account new variables.

For example, if a large van is added to an Amazon station that previously only worked with small and medium vans, there is no training data to inform the model. “But because the core of the model uses analytical and optimization components, we can still predict the shipments per route for a larger van,” says Katariya.

“If you think about a machine learning model, typically interpolating is very easy. But, in our case, we typically want to extrapolate because we're always getting more volume,” says Natarajan Gautam, an Amazon Scholar and a professor at Texas A&M University. “Using historical data to extrapolate is generally not recommended in machine learning, because you haven’t seen those things in the past.”

This is where the physics-based model comes in handy, although a pure physics-based model also wouldn’t work, notes Gautam, because there are so many simplifying assumptions that need to be made to obtain an analytically tractable model. “We want to get the best of both worlds, in some sense. We all want something that adequately represents what is observed, but we also want to be able to extrapolate when not observed.”

Another strategy the team employs to deal with situations where the parameters are constantly changing is to run the same model over and over again to do a type of course correction. “Just run the model every month, so that all the parameters that are changing are learned by the model, and then you are always getting the latest and greatest picture you should expect. This way you have a good model that handles all types of situations, even the ones where no data exists,” says Malshe.

The science team works very closely with people on the ground, both in station and on the road, to perfect these models. They frequently visit the delivery stations and interview the drivers whenever an opportunity arrives. “We make visits to stations and do ride-alongs so that we stay connected with how the business is evolving,” says Katariya.  

In one of these meetings, Gautam says, station employees said their results were different from what the models were predicting. “We went back to the drawing board, looked at the code and the data they were getting ,and took a deep dive to find what was causing the problem”.

They realized the station started delivering to a new zip code, but it didn’t perform the same way the previous station did. That explained the difference between what the model was observing and the real-life data. Having a close connection with operations allowed them to identify the problem and adjust their model.

Dealing with COVID-19 disruptions

For big decisions like vehicle purchases, the AMZL Research Science team forecasts on a 16-month horizon. However, when the team predicted the number of vans needed for 2020, their model didn’t consider the COVID-19 pandemic. “Suddenly there was so much more package demand that all our forecasts were basically incorrect,” says Malshe.

An Amazon employee loads an electric delivery van inside a delivery station in Los Angeles.
For big decisions like vehicle purchases, the AMZL Research Science team forecasts on a 16-month horizon.
About Amazon

He says, when situations like these arise, the first thing the team does is to upgrade the forecasts to incorporate the additional volume. They also perform scenario analyses to check, for example, if the vehicles that had already been budgeted and procured would serve the purpose. Fortunately, in this case, because these decisions are made so far in advance, the team intentionally overbudgeted to account for uncertainties. “Luckily enough, the previous year, we had spent a lot of money on bigger vehicles, and they were able to absorb the additional package volume. So, when we ran these forecasts, we figured out we were in a good spot to be able to handle such changes,” says Malshe.

“Another risk mitigation lever we applied is to make sure there is enough storage space in the delivery stations,” says Malshe. “We made sure we looked into every possible parameter to optimize for vehicles and their placement in various cities, and their deployment to various Delivery Service Partner companies so that they are utilized to the best of our capabilities.”

‘Many challenges and interesting solutions’

The electrification of Amazon’s fleet presents its own set of challenges. Some of these include how to make sure batteries in the vehicles don’t run out of charge on the road; how to optimize electricity and power consumption; and how to account for extreme weather, long trips and hilly areas. “We will keep learning on all of these items as we go forward, and each year we will come up with more innovations to overcome any barriers,” says Malshe.  

For Malshe, the diversity of the scientists working on the team – which includes people with various backgrounds, industries, educations, and skill sets – is what contributes to its success in tackling these unresolved challenges.

"We have people on our team who are extremely data savvy.  We have team members who know  SQL coding in depth and some are extremely good in Python coding. Other team members have expertise in areas like machine learning, optimization, pure modeling, Monte Carlo simulations and what not," says Malshe, who is himself a chemical engineer with experience in logistics.

 “Usually two to three people are working on every project. It divides and conquers various tasks and ultimately gives everyone an opportunity to do valuable work,” he says.

In addition to the team’s range of expertise, Katariya says another team success factor is its ability to collaborate on a wide range of problems. “Each problem has a different challenge, some have a very simple mathematical solution, but are very heavy on the implementation side, and others may require more complex models from a mathematical perspective, but are easier to implement.”

And there are many more challenges to be tackled. In fact, Gautam says, some of his peers have yet to fully grasp the challenges involved in this field of research.

“A lot of people think of last mile as solving a vehicle routing problem. But we do a lot more than that,” he says. “There are so many challenges and interesting solutions that you just can’t take it off the shelf, you really have to invent as you go along. There are tremendous opportunities to do that here and the range of challenges we get to address is what makes being involved with this team so professionally rewarding.”

The team is currently hiring research and data scientists and is looking for experienced researchers to consider applying.

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.