A line of Amazon packages are seen traveling down a conveyor belt
Amazon associates are always on the lookout for damaged items, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

The surprisingly subtle challenge of automating damage detection

Why detecting damage is so tricky at Amazon’s scale — and how researchers are training robots to help with that gargantuan task.

With billions of customer orders flowing through Amazon’s global network of fulfillment centers (FCs) every year, it is an unfortunate but inevitable fact that some of those items will suffer accidental damage during their journey through a warehouse.

Amazon associates are always on the lookout for damaged items in the FC, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

Related content
The customer-obsessed science produced by teams in Berlin is integrated in several Amazon products and services, including retail, Alexa, robotics, and more.

As well as avoiding delays in shipping and improving warehouse efficiency, this particular form of artificial intelligence has the benefit of aiming to reduce waste by shipping fewer damaged goods in the first place, ensuring customers have fewer damaged items to return.

For every thousand items that make their way through an FC prior to being dispatched to the customer, fewer than one becomes damaged. That is a tiny proportion, relatively speaking, but working at the scale of Amazon this nevertheless adds up to a challenging problem.

Damage detection is important because while damage is a costly problem in itself, it becomes even more costly the longer the damage goes undetected.

Amazon associates examine items at multiple occasions through the fulfillment process, of course, but if damage occurs late in the journey and a compromised item makes it as far as the final packaging station, an associate must sideline it so that a replacement can be requested, potentially delaying delivery. As associate must then further examine the sidelined item to determine its future.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

Toward the end of 2020, Sebastian Hoefer, senior applied scientist with the Amazon Robotics AI team, supported by his Amazon colleagues, successfully pitched a novel project to address this problem. The idea: combine computer vision and machine learning (ML) approaches in an attempt to automate the detection of product damage in Amazon FCs.

“You want to avoid damage altogether, but in order to do so you need to first detect it,” notes Hoefer. “We are building that capability, so that robots in the future will be able to utilize it and assist in damage detection.”

Needles in a haystack

Damage detection is a challenging scientific problem, for two main reasons.

Damage caused in Amazon FCs is rare, and that’s clearly a good thing. But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.
Ariel Gordon

The first reason is purely practical — there is precious little data on which to train ML models.

“Damage caused in Amazon FCs is rare, and that’s clearly a good thing,” says Ariel Gordon, a principal applied scientist supporting Hoefer’s team from Seattle. “But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.”

The second reason takes us into the theoretical long grass of artificial intelligence more generally.

For an adult human, everyday damage detection feels easy — we cannot help but notice damage, because our ability to do so has been honed as a fundamental life skill. Yet whether something is sufficiently damaged to render it unsellable is subjective, often ambiguous, and depends on the context, says Maksim Lapin, an Amazon senior applied scientist in Berlin. “Is it damage that is tolerable from the customer point of view, like minor damage to external packaging that will be thrown into the recycling anyway?” Lapin asks. “Or is it damage of a similar degree on the product itself, which would definitely need to be flagged?”

A side by side image shows a perforated white mailer, on the left is a standard image, on the right is the damage as "seen" by Amazon's damage detection models
Damage in Amazon fulfillment centers can be hard to spot, unlike this perforation captured by a standard camera (left) and Amazon's damage detection models (right.)

In addition, the nature of product damage makes it difficult to even define what damage is for ML models. Damage is both heterogenous — any item or product can be damaged — and can take many forms, from rips to holes to a single broken part of a larger set. Multiplied over Amazon’s massive catalogue of items, the challenge becomes enormous.

In short, do ML models stand a chance?

Off to “Damage Land”

To find out, Hoefer’s team first needed to obtain that data in a standardized format amenable to machine learning. They set about collecting it at an FC near Hamburg, Germany, called HAM2, in a section of the warehouse affectionately known as “Damage Land”. Damaged items end up there while decisions are made on whether such items can be sold at a discount, refurbished, donated or, as a last resort, disposed of.

The team set up a sensor-laden, illuminated booth in Damage Land.

“I’m very proud that HAM2 was picked up as pilot site for this initiative,” says Julia Dembeck, a senior operations manager at HAM2, who set up the Damage Taskforce to coordinate the project’s many stakeholders. “Our aim was to support the project wholeheartedly.”

After workshops with Amazon associates to explain the project and its goals, associates started placing damaged items on a tray in the booth, which snapped images using an array of RGB and depth cameras. They then manually annotated the damage in the images using a linked computer terminal.

Annotating damage detection

“The results were amazing and got even better when associates shared their best practices on the optimal way to place items in the tray,” says Dembeck. Types of damage included things like crushes, tears, holes, deconstruction (e.g., contents breaking out from its container) and spillages.

The associates collected about 30,000 product images in this way, two-thirds of which were images of damaged items.

“We also collected images of non-damaged items because otherwise we cannot train our models to distinguish between the two,” says Hoefer. “Twenty thousand pictures of damage are not a lot in ‘big data’ terms, but it is a lot given the rarity of damage.”

With data in hand, the team first applied a supervised learning ML approach, a workhorse in computer vision. They used the data as a labelled training set that would allow the algorithm to build a generalizable model of what damage can look like. When put through its paces on images of products it had never seen before, the model’s early results were promising.

When analyzing a previously unseen image of a product, the model would ascribe a damage confidence score. The higher the score, the more confident it was that the item was damaged.

The researchers had to tune the sensitivity of the model by deciding upon the confidence threshold at which the model would declare a product unfit for sending to a customer. Set that threshold too high, and modest but significant damage could be missed. Set it too low, and the model would declare some undamaged items to be damaged, a false positive.

“We did a back-of-the-envelope calculation and found that if we're sidelining more than a tiny fraction of all items going through this process, then we're going to overwhelm with false positives,” says Hoefer.

Since those preliminary results in late 2021, the team has made significant improvements.

“We’re now optimizing the model to reduce its false positive rate, and our accuracy is increasing week to week,” says Hoefer.

Different types of damage

However, the supervised learning approach alone, while promising, suffers some drawbacks.

For example, what is the model to make of the packaging of a phone protector kit that shows a smashed screen? What is it to make of a cleaning product whose box is awash with apparent spills? What about a blister pack that is entirely undamaged and should hold three razor blades but for some reason contains just two — the “broken set” problem? What about a bag of ground coffee that appears uncompromised but is sitting next to a little puddle of brown powder?

Again, for humans, making sense of such situations is second nature. We not only know what damage looks like, but also quickly learn what undamaged products should look like. We learn to spot anomalies.

Hoefer’s team decided to incorporate this ability into their damage detection system, to create a more rounded and accurate model. Again, more data was needed, because if you want to know what an item should look like, you need standardized imagery of it. This is where recent work pioneered by Amazon’s Multimodal Identification (MMID) team, part of Berlin's Robotics AI group, came in.

The MMID team has developed a computer vision tool that enables the identification of a product purely from images of it. This is useful in cases where the all-important product barcode is smudged, missing, or wrong.

In fact, it was largely the MMID team that developed the sensor-laden photo booth hardware now being put to use by Hoefer’s team. The MMID team needed it to create a gallery of standardized reference images of pristine products.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

“Damage detection could also exploit the same approach by identifying discrepancies between a product image and a gallery of reference images,” says Anton Milan, an Amazon senior applied scientist who is working across MMID and damage detection in Berlin. “In fact, our previous work on MMID allowed us to quickly take off exploring this direction in damage detection by evaluating and tweaking existing solutions.”

By incorporating the MMID team’s product image data and adapting that team’s techniques and models to sharpen their own, the damage-detection system now has a fighting chance of spotting broken sets. It is also much less likely to be fooled by damage-like images printed on the packaging of products, because it can check product imagery taken during the fulfillment process against the image of a pristine version of that product.

“Essentially, we are developing the model’s ability to say ‘something is amiss here’, and that’s a very useful signal,” says Gordon. “It's also problematic, though, because sometimes products change their design. So, the model has to be ‘alive’, continuously learning and updating in accordance with new packaging styles.”

The team is currently exploring how to combine the contributions of both discriminative and anomaly-based ML approaches to give the most accurate assessment of product damage. At the same time, they are developing hardware for trial deployment in an FC, and also collecting more data on damaged items.

The whole enterprise has come together fast, says Hoefer. “We pitched the idea just 18 months ago, and already we have an array of hardware and a team of 15 people making it a reality. As a scientist, this is super rewarding. And if it works as well as we hope, it could be sitting in across the network of Amazon fulfillment centers within a couple of years.”

Hoefer anticipates that the project will ultimately improve customer experience while also reducing waste.

Related content
Amazon Lab126 and the Center for Risk and Reliability will study how devices are accidentally damaged — and how to help ensure they survive more of those incidents.

“Once the technology matures, we expect to see a decrease in customer returns due to damage, because we will be able to identify and fix damaged products before dispatching them to customers. Not only that, by identifying damage early in the fulfillment chain, we will be able to work with vendors to build more robust products. This will again result in reducing damage overall — an important long-term goal of the project,” says Hoefer.

Also looking to the future, Lapin imagines this technology beyond warehousing.

“We are building these capabilities for the highly controlled environments of Amazon fulfillment centers, but I can see some future version of it being deployed in the wild, so to speak, in more chaotic bricks-and-mortar stores, where customers interact with products in unpredictable ways,” says Lapin.

Related content

  • Staff writer
    October 21, 2025
    Initiative will fund over 100 doctoral students researching machine learning, computer vision, and natural-language processing at nine universities.
  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.