A line of Amazon packages are seen traveling down a conveyor belt
Amazon associates are always on the lookout for damaged items, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

The surprisingly subtle challenge of automating damage detection

Why detecting damage is so tricky at Amazon’s scale — and how researchers are training robots to help with that gargantuan task.

With billions of customer orders flowing through Amazon’s global network of fulfillment centers (FCs) every year, it is an unfortunate but inevitable fact that some of those items will suffer accidental damage during their journey through a warehouse.

Amazon associates are always on the lookout for damaged items in the FC, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

Related content
The customer-obsessed science produced by teams in Berlin is integrated in several Amazon products and services, including retail, Alexa, robotics, and more.

As well as avoiding delays in shipping and improving warehouse efficiency, this particular form of artificial intelligence has the benefit of aiming to reduce waste by shipping fewer damaged goods in the first place, ensuring customers have fewer damaged items to return.

For every thousand items that make their way through an FC prior to being dispatched to the customer, fewer than one becomes damaged. That is a tiny proportion, relatively speaking, but working at the scale of Amazon this nevertheless adds up to a challenging problem.

Damage detection is important because while damage is a costly problem in itself, it becomes even more costly the longer the damage goes undetected.

Amazon associates examine items at multiple occasions through the fulfillment process, of course, but if damage occurs late in the journey and a compromised item makes it as far as the final packaging station, an associate must sideline it so that a replacement can be requested, potentially delaying delivery. As associate must then further examine the sidelined item to determine its future.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

Toward the end of 2020, Sebastian Hoefer, senior applied scientist with the Amazon Robotics AI team, supported by his Amazon colleagues, successfully pitched a novel project to address this problem. The idea: combine computer vision and machine learning (ML) approaches in an attempt to automate the detection of product damage in Amazon FCs.

“You want to avoid damage altogether, but in order to do so you need to first detect it,” notes Hoefer. “We are building that capability, so that robots in the future will be able to utilize it and assist in damage detection.”

Needles in a haystack

Damage detection is a challenging scientific problem, for two main reasons.

Damage caused in Amazon FCs is rare, and that’s clearly a good thing. But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.
Ariel Gordon

The first reason is purely practical — there is precious little data on which to train ML models.

“Damage caused in Amazon FCs is rare, and that’s clearly a good thing,” says Ariel Gordon, a principal applied scientist supporting Hoefer’s team from Seattle. “But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.”

The second reason takes us into the theoretical long grass of artificial intelligence more generally.

For an adult human, everyday damage detection feels easy — we cannot help but notice damage, because our ability to do so has been honed as a fundamental life skill. Yet whether something is sufficiently damaged to render it unsellable is subjective, often ambiguous, and depends on the context, says Maksim Lapin, an Amazon senior applied scientist in Berlin. “Is it damage that is tolerable from the customer point of view, like minor damage to external packaging that will be thrown into the recycling anyway?” Lapin asks. “Or is it damage of a similar degree on the product itself, which would definitely need to be flagged?”

A side by side image shows a perforated white mailer, on the left is a standard image, on the right is the damage as "seen" by Amazon's damage detection models
Damage in Amazon fulfillment centers can be hard to spot, unlike this perforation captured by a standard camera (left) and Amazon's damage detection models (right.)

In addition, the nature of product damage makes it difficult to even define what damage is for ML models. Damage is both heterogenous — any item or product can be damaged — and can take many forms, from rips to holes to a single broken part of a larger set. Multiplied over Amazon’s massive catalogue of items, the challenge becomes enormous.

In short, do ML models stand a chance?

Off to “Damage Land”

To find out, Hoefer’s team first needed to obtain that data in a standardized format amenable to machine learning. They set about collecting it at an FC near Hamburg, Germany, called HAM2, in a section of the warehouse affectionately known as “Damage Land”. Damaged items end up there while decisions are made on whether such items can be sold at a discount, refurbished, donated or, as a last resort, disposed of.

The team set up a sensor-laden, illuminated booth in Damage Land.

“I’m very proud that HAM2 was picked up as pilot site for this initiative,” says Julia Dembeck, a senior operations manager at HAM2, who set up the Damage Taskforce to coordinate the project’s many stakeholders. “Our aim was to support the project wholeheartedly.”

After workshops with Amazon associates to explain the project and its goals, associates started placing damaged items on a tray in the booth, which snapped images using an array of RGB and depth cameras. They then manually annotated the damage in the images using a linked computer terminal.

Annotating damage detection

“The results were amazing and got even better when associates shared their best practices on the optimal way to place items in the tray,” says Dembeck. Types of damage included things like crushes, tears, holes, deconstruction (e.g., contents breaking out from its container) and spillages.

The associates collected about 30,000 product images in this way, two-thirds of which were images of damaged items.

“We also collected images of non-damaged items because otherwise we cannot train our models to distinguish between the two,” says Hoefer. “Twenty thousand pictures of damage are not a lot in ‘big data’ terms, but it is a lot given the rarity of damage.”

With data in hand, the team first applied a supervised learning ML approach, a workhorse in computer vision. They used the data as a labelled training set that would allow the algorithm to build a generalizable model of what damage can look like. When put through its paces on images of products it had never seen before, the model’s early results were promising.

When analyzing a previously unseen image of a product, the model would ascribe a damage confidence score. The higher the score, the more confident it was that the item was damaged.

The researchers had to tune the sensitivity of the model by deciding upon the confidence threshold at which the model would declare a product unfit for sending to a customer. Set that threshold too high, and modest but significant damage could be missed. Set it too low, and the model would declare some undamaged items to be damaged, a false positive.

“We did a back-of-the-envelope calculation and found that if we're sidelining more than a tiny fraction of all items going through this process, then we're going to overwhelm with false positives,” says Hoefer.

Since those preliminary results in late 2021, the team has made significant improvements.

“We’re now optimizing the model to reduce its false positive rate, and our accuracy is increasing week to week,” says Hoefer.

Different types of damage

However, the supervised learning approach alone, while promising, suffers some drawbacks.

For example, what is the model to make of the packaging of a phone protector kit that shows a smashed screen? What is it to make of a cleaning product whose box is awash with apparent spills? What about a blister pack that is entirely undamaged and should hold three razor blades but for some reason contains just two — the “broken set” problem? What about a bag of ground coffee that appears uncompromised but is sitting next to a little puddle of brown powder?

Again, for humans, making sense of such situations is second nature. We not only know what damage looks like, but also quickly learn what undamaged products should look like. We learn to spot anomalies.

Hoefer’s team decided to incorporate this ability into their damage detection system, to create a more rounded and accurate model. Again, more data was needed, because if you want to know what an item should look like, you need standardized imagery of it. This is where recent work pioneered by Amazon’s Multimodal Identification (MMID) team, part of Berlin's Robotics AI group, came in.

The MMID team has developed a computer vision tool that enables the identification of a product purely from images of it. This is useful in cases where the all-important product barcode is smudged, missing, or wrong.

In fact, it was largely the MMID team that developed the sensor-laden photo booth hardware now being put to use by Hoefer’s team. The MMID team needed it to create a gallery of standardized reference images of pristine products.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

“Damage detection could also exploit the same approach by identifying discrepancies between a product image and a gallery of reference images,” says Anton Milan, an Amazon senior applied scientist who is working across MMID and damage detection in Berlin. “In fact, our previous work on MMID allowed us to quickly take off exploring this direction in damage detection by evaluating and tweaking existing solutions.”

By incorporating the MMID team’s product image data and adapting that team’s techniques and models to sharpen their own, the damage-detection system now has a fighting chance of spotting broken sets. It is also much less likely to be fooled by damage-like images printed on the packaging of products, because it can check product imagery taken during the fulfillment process against the image of a pristine version of that product.

“Essentially, we are developing the model’s ability to say ‘something is amiss here’, and that’s a very useful signal,” says Gordon. “It's also problematic, though, because sometimes products change their design. So, the model has to be ‘alive’, continuously learning and updating in accordance with new packaging styles.”

The team is currently exploring how to combine the contributions of both discriminative and anomaly-based ML approaches to give the most accurate assessment of product damage. At the same time, they are developing hardware for trial deployment in an FC, and also collecting more data on damaged items.

The whole enterprise has come together fast, says Hoefer. “We pitched the idea just 18 months ago, and already we have an array of hardware and a team of 15 people making it a reality. As a scientist, this is super rewarding. And if it works as well as we hope, it could be sitting in across the network of Amazon fulfillment centers within a couple of years.”

Hoefer anticipates that the project will ultimately improve customer experience while also reducing waste.

Related content
Amazon Lab126 and the Center for Risk and Reliability will study how devices are accidentally damaged — and how to help ensure they survive more of those incidents.

“Once the technology matures, we expect to see a decrease in customer returns due to damage, because we will be able to identify and fix damaged products before dispatching them to customers. Not only that, by identifying damage early in the fulfillment chain, we will be able to work with vendors to build more robust products. This will again result in reducing damage overall — an important long-term goal of the project,” says Hoefer.

Also looking to the future, Lapin imagines this technology beyond warehousing.

“We are building these capabilities for the highly controlled environments of Amazon fulfillment centers, but I can see some future version of it being deployed in the wild, so to speak, in more chaotic bricks-and-mortar stores, where customers interact with products in unpredictable ways,” says Lapin.

Related content

  • Staff writer
    October 21, 2025
    Initiative will fund over 100 doctoral students researching machine learning, computer vision, and natural-language processing at nine universities.
  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 1-2 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Santa Clara
Amazon Web Services (AWS) is assembling an elite team of world-class scientists and engineers to pioneer the next generation of AI-driven development tools. Join the Amazon Kiro LLM-Training team and help create groundbreaking generative AI technologies including Kiro IDE and Amazon Q Developer that are transforming the software development landscape. Key job responsibilities As a key member of our team, you'll be at the forefront of innovation, where cutting-edge research meets real-world application: - Push the boundaries of reinforcement learning and post-training methodologies for large language models specialized in code intelligence - Invent and implement state-of-the-art machine learning solutions that operate at unprecedented Amazon scale - Deploy revolutionary products that directly impact the daily workflows of millions of developers worldwide - Break new ground in AI and machine learning, challenging what's possible in intelligent code assistance - Publish and present your pioneering work at premier ML and NLP conferences (NeurIPS, ICML, ICLR , ACL, EMNLP) - Accelerate innovation by working directly with customers to rapidly transition research breakthroughs into production systems About the team The AWS Developer Agents and Experiences (DAE) team is reimagining the builder experience through generative AI and foundation models. We're leveraging the latest advances in AI to transform how engineers work from IDE environments to web-based tools and services, empowering developers to tackle projects of any scale with unprecedented efficiency. Broadly, AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a dynamic, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.