A line of Amazon packages are seen traveling down a conveyor belt
Amazon associates are always on the lookout for damaged items, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

The surprisingly subtle challenge of automating damage detection

Why detecting damage is so tricky at Amazon’s scale — and how researchers are training robots to help with that gargantuan task.

With billions of customer orders flowing through Amazon’s global network of fulfillment centers (FCs) every year, it is an unfortunate but inevitable fact that some of those items will suffer accidental damage during their journey through a warehouse.

Amazon associates are always on the lookout for damaged items in the FC, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

Related content
The customer-obsessed science produced by teams in Berlin is integrated in several Amazon products and services, including retail, Alexa, robotics, and more.

As well as avoiding delays in shipping and improving warehouse efficiency, this particular form of artificial intelligence has the benefit of aiming to reduce waste by shipping fewer damaged goods in the first place, ensuring customers have fewer damaged items to return.

For every thousand items that make their way through an FC prior to being dispatched to the customer, fewer than one becomes damaged. That is a tiny proportion, relatively speaking, but working at the scale of Amazon this nevertheless adds up to a challenging problem.

Damage detection is important because while damage is a costly problem in itself, it becomes even more costly the longer the damage goes undetected.

Amazon associates examine items at multiple occasions through the fulfillment process, of course, but if damage occurs late in the journey and a compromised item makes it as far as the final packaging station, an associate must sideline it so that a replacement can be requested, potentially delaying delivery. As associate must then further examine the sidelined item to determine its future.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

Toward the end of 2020, Sebastian Hoefer, senior applied scientist with the Amazon Robotics AI team, supported by his Amazon colleagues, successfully pitched a novel project to address this problem. The idea: combine computer vision and machine learning (ML) approaches in an attempt to automate the detection of product damage in Amazon FCs.

“You want to avoid damage altogether, but in order to do so you need to first detect it,” notes Hoefer. “We are building that capability, so that robots in the future will be able to utilize it and assist in damage detection.”

Needles in a haystack

Damage detection is a challenging scientific problem, for two main reasons.

Damage caused in Amazon FCs is rare, and that’s clearly a good thing. But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.
Ariel Gordon

The first reason is purely practical — there is precious little data on which to train ML models.

“Damage caused in Amazon FCs is rare, and that’s clearly a good thing,” says Ariel Gordon, a principal applied scientist supporting Hoefer’s team from Seattle. “But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.”

The second reason takes us into the theoretical long grass of artificial intelligence more generally.

For an adult human, everyday damage detection feels easy — we cannot help but notice damage, because our ability to do so has been honed as a fundamental life skill. Yet whether something is sufficiently damaged to render it unsellable is subjective, often ambiguous, and depends on the context, says Maksim Lapin, an Amazon senior applied scientist in Berlin. “Is it damage that is tolerable from the customer point of view, like minor damage to external packaging that will be thrown into the recycling anyway?” Lapin asks. “Or is it damage of a similar degree on the product itself, which would definitely need to be flagged?”

A side by side image shows a perforated white mailer, on the left is a standard image, on the right is the damage as "seen" by Amazon's damage detection models
Damage in Amazon fulfillment centers can be hard to spot, unlike this perforation captured by a standard camera (left) and Amazon's damage detection models (right.)

In addition, the nature of product damage makes it difficult to even define what damage is for ML models. Damage is both heterogenous — any item or product can be damaged — and can take many forms, from rips to holes to a single broken part of a larger set. Multiplied over Amazon’s massive catalogue of items, the challenge becomes enormous.

In short, do ML models stand a chance?

Off to “Damage Land”

To find out, Hoefer’s team first needed to obtain that data in a standardized format amenable to machine learning. They set about collecting it at an FC near Hamburg, Germany, called HAM2, in a section of the warehouse affectionately known as “Damage Land”. Damaged items end up there while decisions are made on whether such items can be sold at a discount, refurbished, donated or, as a last resort, disposed of.

The team set up a sensor-laden, illuminated booth in Damage Land.

“I’m very proud that HAM2 was picked up as pilot site for this initiative,” says Julia Dembeck, a senior operations manager at HAM2, who set up the Damage Taskforce to coordinate the project’s many stakeholders. “Our aim was to support the project wholeheartedly.”

After workshops with Amazon associates to explain the project and its goals, associates started placing damaged items on a tray in the booth, which snapped images using an array of RGB and depth cameras. They then manually annotated the damage in the images using a linked computer terminal.

Annotating damage detection

“The results were amazing and got even better when associates shared their best practices on the optimal way to place items in the tray,” says Dembeck. Types of damage included things like crushes, tears, holes, deconstruction (e.g., contents breaking out from its container) and spillages.

The associates collected about 30,000 product images in this way, two-thirds of which were images of damaged items.

“We also collected images of non-damaged items because otherwise we cannot train our models to distinguish between the two,” says Hoefer. “Twenty thousand pictures of damage are not a lot in ‘big data’ terms, but it is a lot given the rarity of damage.”

With data in hand, the team first applied a supervised learning ML approach, a workhorse in computer vision. They used the data as a labelled training set that would allow the algorithm to build a generalizable model of what damage can look like. When put through its paces on images of products it had never seen before, the model’s early results were promising.

When analyzing a previously unseen image of a product, the model would ascribe a damage confidence score. The higher the score, the more confident it was that the item was damaged.

The researchers had to tune the sensitivity of the model by deciding upon the confidence threshold at which the model would declare a product unfit for sending to a customer. Set that threshold too high, and modest but significant damage could be missed. Set it too low, and the model would declare some undamaged items to be damaged, a false positive.

“We did a back-of-the-envelope calculation and found that if we're sidelining more than a tiny fraction of all items going through this process, then we're going to overwhelm with false positives,” says Hoefer.

Since those preliminary results in late 2021, the team has made significant improvements.

“We’re now optimizing the model to reduce its false positive rate, and our accuracy is increasing week to week,” says Hoefer.

Different types of damage

However, the supervised learning approach alone, while promising, suffers some drawbacks.

For example, what is the model to make of the packaging of a phone protector kit that shows a smashed screen? What is it to make of a cleaning product whose box is awash with apparent spills? What about a blister pack that is entirely undamaged and should hold three razor blades but for some reason contains just two — the “broken set” problem? What about a bag of ground coffee that appears uncompromised but is sitting next to a little puddle of brown powder?

Again, for humans, making sense of such situations is second nature. We not only know what damage looks like, but also quickly learn what undamaged products should look like. We learn to spot anomalies.

Hoefer’s team decided to incorporate this ability into their damage detection system, to create a more rounded and accurate model. Again, more data was needed, because if you want to know what an item should look like, you need standardized imagery of it. This is where recent work pioneered by Amazon’s Multimodal Identification (MMID) team, part of Berlin's Robotics AI group, came in.

The MMID team has developed a computer vision tool that enables the identification of a product purely from images of it. This is useful in cases where the all-important product barcode is smudged, missing, or wrong.

In fact, it was largely the MMID team that developed the sensor-laden photo booth hardware now being put to use by Hoefer’s team. The MMID team needed it to create a gallery of standardized reference images of pristine products.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

“Damage detection could also exploit the same approach by identifying discrepancies between a product image and a gallery of reference images,” says Anton Milan, an Amazon senior applied scientist who is working across MMID and damage detection in Berlin. “In fact, our previous work on MMID allowed us to quickly take off exploring this direction in damage detection by evaluating and tweaking existing solutions.”

By incorporating the MMID team’s product image data and adapting that team’s techniques and models to sharpen their own, the damage-detection system now has a fighting chance of spotting broken sets. It is also much less likely to be fooled by damage-like images printed on the packaging of products, because it can check product imagery taken during the fulfillment process against the image of a pristine version of that product.

“Essentially, we are developing the model’s ability to say ‘something is amiss here’, and that’s a very useful signal,” says Gordon. “It's also problematic, though, because sometimes products change their design. So, the model has to be ‘alive’, continuously learning and updating in accordance with new packaging styles.”

The team is currently exploring how to combine the contributions of both discriminative and anomaly-based ML approaches to give the most accurate assessment of product damage. At the same time, they are developing hardware for trial deployment in an FC, and also collecting more data on damaged items.

The whole enterprise has come together fast, says Hoefer. “We pitched the idea just 18 months ago, and already we have an array of hardware and a team of 15 people making it a reality. As a scientist, this is super rewarding. And if it works as well as we hope, it could be sitting in across the network of Amazon fulfillment centers within a couple of years.”

Hoefer anticipates that the project will ultimately improve customer experience while also reducing waste.

Related content
Amazon Lab126 and the Center for Risk and Reliability will study how devices are accidentally damaged — and how to help ensure they survive more of those incidents.

“Once the technology matures, we expect to see a decrease in customer returns due to damage, because we will be able to identify and fix damaged products before dispatching them to customers. Not only that, by identifying damage early in the fulfillment chain, we will be able to work with vendors to build more robust products. This will again result in reducing damage overall — an important long-term goal of the project,” says Hoefer.

Also looking to the future, Lapin imagines this technology beyond warehousing.

“We are building these capabilities for the highly controlled environments of Amazon fulfillment centers, but I can see some future version of it being deployed in the wild, so to speak, in more chaotic bricks-and-mortar stores, where customers interact with products in unpredictable ways,” says Lapin.

Related content

GB, London
We are looking for an Economist to work on exciting and challenging business problems related to Amazon Retail’s worldwide product assortment. You will build innovative solutions based on econometrics, machine learning, and experimentation. You will be part of a interdisciplinary team of economists, product managers, engineers, and scientists, and your work will influence finance and business decisions affecting Amazon’s vast product assortment globally. If you have an entrepreneurial spirit, you know how to deliver results fast, and you have a deeply quantitative, highly innovative approach to solving problems, and long for the opportunity to build pioneering solutions to challenging problems, we want to talk to you. Key job responsibilities * Work on a challenging problem that has the potential to significantly impact Amazon’s business position * Develop econometric models and experiments to measure the customer and financial impact of Amazon’s product assortment * Collaborate with other scientists at Amazon to deliver measurable progress and change * Influence business leaders based on empirical findings
US, NY, New York
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team: Amazon Go is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your Amazon account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. The Role: Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As a Machine Learning or Computer Vision Research Scientist, you will help solve a variety of technical challenges and mentor other engineers. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
IN, KA, Bengaluru
Customer addresses, Geospatial information and Road-network play a crucial role in Amazon Logistics' Delivery Planning systems. We own exciting science problems in the areas of Address Normalization, Geocode learning, Maps learning, Time estimations including route-time, delivery-time, transit-time predictions which are key inputs in delivery planning. As part of the Geospatial science team within Last Mile, you will partner closely with other scientists and engineers in a collegial environment to develop enterprise ML solutions with a clear path to business impact. The setting also gives you an opportunity to think about a complex large-scale problem for multiple years and building increasingly sophisticated solutions year over year. In the process there will be opportunity to innovate, explore SOTA and publish the research in internal and external ML conferences. Successful candidates will have deep knowledge of competing machine learning methods for large scale predictive modelling, natural language processing, semi-supervised & graph based learning. We also look for the experience to graduate prototype models to production and the communication skills to explain complex technical approaches to the stakeholders of varied technical expertise. Here is a glimpse of the problem spaces and technologies that we deal with on a regular basis: 1. De-duping and organizing addresses into hierarchy while handling noisy, inconsistent, localized and multi-lingual user inputs. We do this at the scale of millions of customers for established (US, EU) as well as emerging geographies (IN, MX). We make use of technologies like LLMs, Weak supervision, Graph-based clustering & Entity matching. We also use additional modalities such as building outlines in maps, street view images and 3P datasets, gazetteers. 2. Build a generic ML framework which leverages relationship between places to improve delivery experience by learning precise delivery locations and propagating attributes, such as business hours and safe places. 3. (Work done in sister teams) Developing systems to consume inputs from areal imagery and optimize our maps to enable efficient delivery planning. Also building models to estimate travel time, turn costs, optimal route and defect propensities. Key job responsibilities As an Applied Scientist I, your responsibility will be to deliver on a well defined but complex business problem, explore SOTA technologies including GenAI and customize the large models as suitable for the application. Your job will be to work on a end-to-end business problem from design to experimentation and implementation. There is also an opportunity to work on open ended ML directions within the space and publish the work in prestigious ML conferences. About the team Last Mile Address Intelligence (LMAI) team owns WW charter for address and location learning solutions which are crucial for efficient Last Mile delivery planning. The team works out of Hyderabad and Bangalore offices in India. LMAI is a part of Geospatial science team, which also owns problems in the space of maps learning and travel time estimations. The rest of the Geospatial science team and senior leadership of Last Mile org works out of Bellevue office.
IL, Haifa
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows from Originals and Exclusive content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at any time and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), natural language processing (NLP), multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s recommendation systems, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Lead cutting-edge research in computer vision and natural language processing, applying it to video-centric media challenges. - Develop scalable machine learning models to enhance media asset generation, content discovery, and personalization. - Collaborate closely with engineering teams to integrate your models into production systems at scale, ensuring optimal performance and reliability. - Actively participate in publishing your research in leading conferences and journals. - Lead a team of skilled applied scientists, you will shape the research strategy, create forward-looking roadmaps, and effectively communicate progress and insights to senior leadership - Stay up-to-date with the latest advancements in AI and machine learning to drive future research initiatives. About the team At Prime Video, we strive to deliver the best-in-class entertainment experiences across devices for millions of customers. Whether it’s developing new personalization algorithms, improving video content discovery, or building robust media processing systems, our scientists and engineers tackle real-world challenges daily. You’ll be part of a fast-paced environment where experimentation, risk-taking, and innovation are encouraged.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
US, WA, Bellevue
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing groundbreaking products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team! Key job responsibilities * Design, develop, and evaluate highly innovative models for Natural Language Programming (NLP), Large Language Model (LLM), or Large Computer Vision Models. * Use SQL to query and analyze the data. * Use Python, Jupyter notebook, and Pytorch to train/test/deploy ML models. * Use machine learning and analytical techniques to create scalable solutions for business problems. * Research and implement novel machine learning and statistical approaches. * Mentor interns. * Work closely with data & software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan Learn more about our benefits here: https://amazon.jobs/en/internal/benefits/us-benefits-and-stock About the team When a customer returns a package to Amazon, the request and package will be passed through our WWRR machine learning (ML) systems so that we could improve the customer experience, identify return root cause, optimize re-use, and evaluate the returned package. Our problems touch multiple modalities spanning from: textual, categorical, image, to speech data. We operate at large scale and rely on state-of-the-art modeling techniques to power our ML models: XGBoost, BERT, Vision Transformers, Large Language Models.
US, CA, Santa Clara
Amazon CloudWatch is the native AWS monitoring and observability service for cloud resources and applications. We are seeking a talented Senior Applied Scientist to develop next-generation scientific methods and infrastructure to support a core AWS business that delivers critical services to millions of customers operating at scale. This is a high visibility and high impact role that work on highly strategic projects in the AI/ML and Analytics space, will interact with all levels of AWS leadership. We are developing solutions that not only surface the “what” but also the “why” and “how to fix it”, without requiring operators to have extensive domain knowledge and technical expertise to efficiently troubleshoot and remediate incidents. Using decades of AWS operational excellence coupled with the advances in LLMs and Gen-AI technologies, we are transforming the very core of how customers can effortlessly interact with our offerings to build and operate their applications in the cloud. We are hiring to grow our team, and are looking for well-rounded applied scientists with backgrounds in machine learning, foundation models, and natural language processing. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, mission driven team, then this is your moment to join us on this exciting journey! Key job responsibilities As an Applied Scientist II you will be responsible for * Research and development of algorithms that improve training of foundation models across pre-training, multitask learning, supervised finetuning, and reinforcement learning from human feedback * Research and development of novel approaches for anomaly detection, root cause analysis, and provide intelligent insights from vast amounts of monitoring and observability data * Collaborating with scientists, engineers, and Product Managers across CloudWatch team as well as directly with customers * Lead key science initiatives in strategic investment areas of AI/ML/LLM Ops and Observability * Be an industry thought leader representing Amazon at top-tier scientific conferences * Engaging in the hiring process and developing, growing, and mentoring junior scientists A day in the life Working closely with and across agile teams, you will be able to see and feel the impact of your work on our customers. This is a high visibility and high impact role that will interact with all levels of AWS leadership. Our ideal candidate is excited about the incredible opportunity that cloud monitoring represents and is deeply passionate about delivering the highest quality services leveraging AI/ML/LLMs. You’re naturally customer centric and thrive in a fast-paced environment that requires strong technical and business judgment and solid communication skills. About the team Amazon CloudWatch Logs is a core monitoring service used by millions of AWS customers. We move fast and have delivered remarkable products and features over the last few years to streamline how AWS customers troubleshoot their critical applications. Our mission is to be the most cost effective, integrated, fast, and secure logs management and analytics platform for AWS customers. We are a diverse group of product and engineering professionals that are passionate about delivering logging features that delight customers operating at any scale. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
"We see our customers as invited guests to a party, and we are the hosts. It's our job every day to make every important aspect of the customer experience a little bit better." - Jeff Bezos, Founder & CEO. We didn’t make Amazon a trillion-dollar company, our customers did and we want to ensure that our customers always have a positive experience that keeps them coming back to Amazon. To help achieve this, the Worldwide Defect Elimination (WWDE) team, within Amazon Customer Service (CS), relentlessly focuses on maintaining customer trust by building products that offer appropriate resolutions to resolve issues faced by our customers. WWDE scientists solve complex problems and build scalable solutions to help our customers navigate through issues and eliminate systemic defects to prevent future issues. As a Research Scientist, your role is pivotal in leveraging advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques to address customer issues at scale. You'll develop innovative solutions that summarize and detect issues, organize them using taxonomy, and pinpoint root causes within Amazon systems. Your expertise will drive the identification of responsible stakeholders and enable swift resolution. Utilizing the latest techniques, you will build an AI ecosystem that can efficiently comb over our billions of customer interactions (using a combination of media). As a part of this role, you will collaborate with a large team of experts in the field and move the state of defect elimination research forward. You should have a knack for leveraging AI to translate complex data insights into actionable strategies and can communicate these effectively to both technical and non-technical audiences. Key job responsibilities - Develop ML/GenAI-powered solutions for automating defect elimination workflows - Design and implement robust metrics to evaluate the effectiveness of ML/AI models - Perform statistical analyses and statistical tests, including hypothesis testing and A/B testing - Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: - Medical, Dental, and Vision Coverage - Maternity and Parental Leave Options - Paid Time Off (PTO) - 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply.
US, CA, San Francisco
We are hiring an Economist with the ability to disambiguate very challenging structural problems in two and multi-sided markets. The right hire will be able to get dirty with the data to come up with stylized facts, build reduced form model that motivate structural assumptions, and build to more complex structural models. The main use case will be understanding the incremental effects of subsidies to a two sided market relate to sales motions characterized by principal agent problems. Key job responsibilities This role with interface directly with product owners, scientists/economists, and leadership to create multi-year research agendas that drive step change growth for the business. The role will also be an important collaborator with other science teams at AWS. A day in the life Our team takes big swings and works on hard cross organizational problems where the optimal success rate is not 100%. We also ask people to grow their skills and stretch and make sure we do it in a supportive and fun environment. It’s about empirically measured impact, advancement, and fun on our team. We work hard during work hours but we also don’t encourage working at nights or on weekends except in very rare, high stakes cases. Burn out isn’t a successful long run strategy. Because we invest in the long run success of our group it’s important to have hobbies, relax and then come to work refreshed and excited. It makes for bigger impact, faster skill accrual and thus career advancement. About the team Our group is technically rigorous and encourages ongoing academic conference participation and publication. Our leaders are here for you and to enable you to be successful. We believe in being servant leaders focused on influence: good data work has little value if it doesn’t translate into actionable insights that are rolled out and impact the real economy. We are communication centric since being able to explain what we do ensures high success rates and lowers administrative churn. Also: we laugh a lot. If it’s not fun, what’s the point?
US, WA, Seattle
This is a unique opportunity to join a small, high-impact team working on AI agents for health initiatives. You will lead the crucial data foundation of our project, managing health data acquisition, processing, and model evaluation, while also contributing to machine learning model development. Your work will directly influence the creation and improvement of AI solutions that could significantly impact how individuals manage their daily health and long-term wellness goals. If you're passionate about leveraging data and developing ML models to solve meaningful problems in healthcare through AI, this role is for you. You'll work on large-scale data processing, design annotation workflows, develop evaluation metrics, and contribute to the machine learning algorithms that drive the performance of our health AI agents. You'll have the chance to innovate alongside healthcare experts and data scientists. In this early-stage initiative, you'll have significant influence on our data strategies and ML approaches, shaping how they drive our AI solutions. This is an excellent opportunity for a high-judgment data scientist with ML expertise to demonstrate impact and make key decisions that will form the backbone of our health AI initiatives. Key job responsibilities Be the complete owner for health data acquisition, processing, and quality assurance Design and oversee data annotation workflows Collaborate on data sourcing strategies Lead health data acquisition and processing initiatives Manage AI agent example annotation processes Develop and implement data evaluation metrics Design, implement, and evaluate machine learning models for AI agents, with a focus on improving natural language understanding and generation in health contexts A day in the life You'll work with a cross-disciplinary team to source, evaluate, and leverage health data for AI agent development. You'll shape data acquisition strategies, annotation workflows, and machine learning models to enhance our AI's health knowledge. Expect to dive deep into complex health datasets, challenge conventional data evaluation metrics, and continuously refine our AI agents' ability to understand and respond to health-related queries.