A graphic shows a simulation of what a VR guided experience might look like, it features colored circles, a humanoid face, and other features
TRIPP is an Alexa Fund portfolio company that is exploring how virtual reality can be combined with meditation. The company's CEO and co-founder Nanea Reeves noted that the VR experiences "are deliberately psychedelic. You find yourself inside an atom or floating in space."
TRIPP

TRIPP explores the potential of virtual reality–powered meditation

Alexa Fund portfolio company’s science-led program could change how we approach mental wellness — and how we use VR.

(Editor’s note: This article is the latest installment in a series by Amazon Science delving into the science behind products and services of companies in which Amazon has invested. The Alexa Fund participated in TRIPP’s $11.2M Series A extension funding round in June 2022.)

With meditation soaring in popularity and the virtual reality (VR) industry booming, Alexa Fund portfolio company TRIPP is at the confluence of two powerful trends: mental well-being and VR. TRIPP is a digital wellness program that uses VR headsets to immerse users in breathing meditation experiences.

The idea to meld meditation and VR first occurred to TRIPP CEO and co-founder Nanea Reeves in 2017 when she, a lifelong practitioner of meditation with a 15-year career in the gaming industry, was experimenting with the medium by building a solitaire game in VR.

This graphic shows a potential visualization from the VR app TRIPP, it includes a planet floating in space against a background featuring stars and bright colors
TRIPP CEO Nanea Reeves said she was inspired by the work of Giuseppe Riva, a neuropsychologist. “We wondered if we could create environments that make you go, ‘Oh, wow!’ and give you a lift,” Reeves explains.
TRIPP

“The way I felt exploring VR was even more interesting to me than the actual development,” Reeves says. Her interest developed into a deep curiosity about the psychological effects of VR, and she began searching the scientific literature.

In addition to studying VR in medical and mental health use cases, she discovered work by Giuseppe Riva, a neuropsychologist whose research has shown that VR can elicit emotions such as awe and, in turn, influence people’s well-being, agency, and perceptions of themselves.

“Inspired by Giuseppe’s research, we wondered if we could create environments that make you go, ‘Oh, wow!’ and give you a lift,” Reeves explains. That became her impetus to found TRIPP in 2017, pursuing the hypothesis that, by stimulating experiences through VR, people may gain some agency over their emotions.

Riva’s work identified several aspects of VR that made it particularly effective for evoking awe, including its immersive nature and the complexity and scale of virtual environments.

“We started leaning into that, and we started to play with scale in our designs,” says Reeves.

In 2019, TRIPP launched its award-winning wellness application, TRIPP, in VR. The application offers immersive mindfulness experiences and, to date, has delivered nearly 6 million wellness sessions. TRIPP continues to work closely with neuroscience and psychiatry advisors through PsyAssist to design and evaluate their experiences and with a host of researchers who are studying its potential uses.

A recent clinical trial suggested that TRIPP might positively influence well-being and mood in cancer patients, and ongoing projects are assessing whether TRIPP can help people in recovery from substance use disorders or anxiety and pain control, among other initiatives.

“With some of the early data coming in, it seems very promising that tools like TRIPP might have a positive impact,” Reeves says, “but we are still only at the beginning of what may be possible with VR.”

Amazon Science spoke with Reeves about the motivation for TRIPP, its roots in science, and the implications for what it can achieve with VR.

  1. Q. 

    Why take meditation virtual?

    A. 

    It’s actually a super native case for VR, because the immersive quality allows you to unplug. You can’t look at your phone by nature of the immersion. I was blown away by how I felt moving in and out of VR — the feeling of respite.

    A lot of the early VR experiences simulated environments that made you terrified, like walking a plank or standing at the edge of a cliff. And it occurred to me: if we could scare people so easily, could we trigger other emotional changes that are beneficial?

    Our approach is to use immersion to drive a deeper connection to self-contemplative thoughts. You’re immersed in this psychologically safe container that is designed to capture your awareness, to allow you to be present and connect to self. With VR, it’s not just an audio file guiding you toward connecting with your breath. We can show you your breath, like star crystals coming in and out of your mouth.

    Some of the early offerings thought VR was really only for gaming. When we first got TRIPP on Oculus, they didn’t know where to put us because they didn’t have a relaxation genre then. We were pretty buried in the store. But we started to get a little bit of traction, and we soon had surprisingly regular usage over time. VR has this problem where you go in, you go, “Wow, that was amazing!” and then it's in your closet. You never pick it up again. When we were designing the product, we knew we had to build for repeat usage. So, we built it procedurally, and now we can update it from the server and add new content regularly.

  2. Q. 

    How is science leading the design and development of TRIPP?

    A. 

    I started by looking at the research investigating VR’s effect on the brain, largely by neuroscientists and behavioral therapists exploring mental health and medical use cases for VR. Most of them focused on simulation, like simulated exposure therapy. But I wondered if, instead of simulating something, could we stimulate responses? I took that question to the researchers working on VR and its effects on mental well-being. We started digging into the research and then, based on the research data, designed VR experiences intended to trigger states of wonder and awe. We tried them out on people and captured some physiological data like heart rate and EEG to see if the experiences were directionally achieving the effect we wanted.

    We stay very grounded in research-driven design choices. We’re a bit edgy. Rather than mimicking natural environments, the experiences are deliberately psychedelic. You find yourself inside an atom or floating in space. First, we tried things like a waterfall or a beach, but when we tested them, they didn’t feel good. I found some research describing how sensory dissonance in synthetic natural environments can create a stress response. Your brain goes, “Well, it looks like a beach, but I don’t smell the ocean. So what’s wrong with this environment?” We realized we had to create environments for which you have no mental model. So we said, “OK, let’s put you in a cosmic flotation tank, whatever that means, because no one knows what space smells like.”

    We’re also starting an enterprise program to support employee wellness and team-building with a hybrid workforce, but also with a focus on using the metaverse for driving ideation and innovation. Can we use these otherworldly environments to spark creativity?
    Nanea Reeves

    After we launched, we started collecting data on mood and emotional state in the live user sessions via self-reported surveys that are based on what they use in mental health research. We bookended our sessions with users, basically asking “How do you feel?” before and after each session. We did things like randomizing the order of the response selections to control against position bias. Now, we have data collected from close to 6 million sessions that we can slice and dice by the time of day and, for a percentage of our audience who opted in, age, gender, and location. It’s become a meaningful body of data that we can share with researchers once it has been de-identified. We also work with researchers who want to study TRIPP and its potential applications. It’s been fascinating to work with that community.

    One example is this group in Germany working with cancer patients undergoing surgery, looking at the effects of TRIPP sessions on their quality of life, well-being, and mood. This study was published in Nature’s Scientific Reports. Participation was good, and patients who used TRIPP had lower heart rates and breathing rates after their sessions. They had improved scores on their mood and emotion surveys after the sessions too. What the study shows us is that VR-based relaxation is a viable option and may be beneficial for cancer patients undergoing surgery. Of course, we don’t make any therapeutic claims until we have a tremendous amount of evidence to support those claims.

    You can find other published data and scientific reports examining TRIPP’s effects on adolescents and its use in palliative care. And we’re working with researchers who are looking at whether TRIPP could help people experiencing addiction and rehab, chemotherapy, severe mental illness, anxiety, and pain. Researchers are also using TRIPP to ease anxiety and help people prepare for ketamine-assisted therapy, so they get the most out of their treatment. I feel very motivated to see how we can help and participate in these research initiatives.

  3. Q. 

    How might TRIPP change how we use VR, beyond its medical applications?

    A. 

    Earlier this year, we acquired EvolVR, which holds live group meditations. Several hundred avatars attend the most popular conversations. People really open up. Skip Rizzo, PhD, a renowned researcher in the field and an advisor to TRIPP, did a pilot study and found that people suffering from PTSD were more open and honest with an avatar. We want to further investigate this as there’s something about the “digital veil” of VR where you don’t feel the judgment of being seen by other people. I think this is a wonderful use case for the metaverse.

    We’re also starting an enterprise program to support employee wellness and team-building with a hybrid workforce, but also with a focus on using the metaverse for driving ideation and innovation. Can we use these otherworldly environments to spark creativity?

    It’s also fascinating to think about the gig economy that could emerge from the metaverse — similar to what first emerged from mobile computing. For example, I met a woman at one of our live group meditation events in the metaverse who’s earning a living as one of the top world-builders in Altspace VR. She’s a mother of five who has never worked in tech before. She’s now a programmer, building these virtual worlds.

    We’re only beginning to explore the potential of VR. It’s like the early days of mobile. Initially, no one thought we’d want to play games or even text message on our cell phones. Now, for the past decade, we have been walking around with our heads down staring at these phone screens nonstop. What kind of innovation will happen in a future when XR glasses are ubiquitous and allow us to experience the world around us in an entirely new and adaptive way?

Related content

US, CA, Pasadena
We’re on the lookout for the curious, those who think big and want to define the world of tomorrow. At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with exciting new challenges, developing new skills, and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. The Amazon Web Services (AWS) Center for Quantum Computing (CQC) in Pasadena, CA, is looking for a Quantum Research Scientist Intern in the Device and Architecture Theory group. You will be joining a multi-disciplinary team of scientists, engineers, and technicians, all working at the forefront of quantum computing to innovate for the benefit of our customers. Key job responsibilities As an intern with the Device and Architecture Theory team, you will conduct pathfinding theoretical research to inform the development of next-generation quantum processors. Potential focus areas include device physics of superconducting circuits, novel qubits and gate schemes, and physical implementations of error-correcting codes. You will work closely with both theorists and experimentalists to explore these directions. We are looking for candidates with excellent problem-solving and communication skills who are eager to work collaboratively in a team environment. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in quantum computing and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 1-2 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Santa Clara
Amazon Web Services (AWS) is assembling an elite team of world-class scientists and engineers to pioneer the next generation of AI-driven development tools. Join the Amazon Kiro LLM-Training team and help create groundbreaking generative AI technologies including Kiro IDE and Amazon Q Developer that are transforming the software development landscape. Key job responsibilities As a key member of our team, you'll be at the forefront of innovation, where cutting-edge research meets real-world application: - Push the boundaries of reinforcement learning and post-training methodologies for large language models specialized in code intelligence - Invent and implement state-of-the-art machine learning solutions that operate at unprecedented Amazon scale - Deploy revolutionary products that directly impact the daily workflows of millions of developers worldwide - Break new ground in AI and machine learning, challenging what's possible in intelligent code assistance - Publish and present your pioneering work at premier ML and NLP conferences (NeurIPS, ICML, ICLR , ACL, EMNLP) - Accelerate innovation by working directly with customers to rapidly transition research breakthroughs into production systems About the team The AWS Developer Agents and Experiences (DAE) team is reimagining the builder experience through generative AI and foundation models. We're leveraging the latest advances in AI to transform how engineers work from IDE environments to web-based tools and services, empowering developers to tackle projects of any scale with unprecedented efficiency. Broadly, AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Lead the planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a dynamic, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.