A graphic shows a simulation of what a VR guided experience might look like, it features colored circles, a humanoid face, and other features
TRIPP is an Alexa Fund portfolio company that is exploring how virtual reality can be combined with meditation. The company's CEO and co-founder Nanea Reeves noted that the VR experiences "are deliberately psychedelic. You find yourself inside an atom or floating in space."
TRIPP

TRIPP explores the potential of virtual reality–powered meditation

Alexa Fund portfolio company’s science-led program could change how we approach mental wellness — and how we use VR.

(Editor’s note: This article is the latest installment in a series by Amazon Science delving into the science behind products and services of companies in which Amazon has invested. The Alexa Fund participated in TRIPP’s $11.2M Series A extension funding round in June 2022.)

With meditation soaring in popularity and the virtual reality (VR) industry booming, Alexa Fund portfolio company TRIPP is at the confluence of two powerful trends: mental well-being and VR. TRIPP is a digital wellness program that uses VR headsets to immerse users in breathing meditation experiences.

The idea to meld meditation and VR first occurred to TRIPP CEO and co-founder Nanea Reeves in 2017 when she, a lifelong practitioner of meditation with a 15-year career in the gaming industry, was experimenting with the medium by building a solitaire game in VR.

This graphic shows a potential visualization from the VR app TRIPP, it includes a planet floating in space against a background featuring stars and bright colors
TRIPP CEO Nanea Reeves said she was inspired by the work of Giuseppe Riva, a neuropsychologist. “We wondered if we could create environments that make you go, ‘Oh, wow!’ and give you a lift,” Reeves explains.
TRIPP

“The way I felt exploring VR was even more interesting to me than the actual development,” Reeves says. Her interest developed into a deep curiosity about the psychological effects of VR, and she began searching the scientific literature.

In addition to studying VR in medical and mental health use cases, she discovered work by Giuseppe Riva, a neuropsychologist whose research has shown that VR can elicit emotions such as awe and, in turn, influence people’s well-being, agency, and perceptions of themselves.

“Inspired by Giuseppe’s research, we wondered if we could create environments that make you go, ‘Oh, wow!’ and give you a lift,” Reeves explains. That became her impetus to found TRIPP in 2017, pursuing the hypothesis that, by stimulating experiences through VR, people may gain some agency over their emotions.

Riva’s work identified several aspects of VR that made it particularly effective for evoking awe, including its immersive nature and the complexity and scale of virtual environments.

“We started leaning into that, and we started to play with scale in our designs,” says Reeves.

In 2019, TRIPP launched its award-winning wellness application, TRIPP, in VR. The application offers immersive mindfulness experiences and, to date, has delivered nearly 6 million wellness sessions. TRIPP continues to work closely with neuroscience and psychiatry advisors through PsyAssist to design and evaluate their experiences and with a host of researchers who are studying its potential uses.

A recent clinical trial suggested that TRIPP might positively influence well-being and mood in cancer patients, and ongoing projects are assessing whether TRIPP can help people in recovery from substance use disorders or anxiety and pain control, among other initiatives.

“With some of the early data coming in, it seems very promising that tools like TRIPP might have a positive impact,” Reeves says, “but we are still only at the beginning of what may be possible with VR.”

Amazon Science spoke with Reeves about the motivation for TRIPP, its roots in science, and the implications for what it can achieve with VR.

  1. Q. 

    Why take meditation virtual?

    A. 

    It’s actually a super native case for VR, because the immersive quality allows you to unplug. You can’t look at your phone by nature of the immersion. I was blown away by how I felt moving in and out of VR — the feeling of respite.

    A lot of the early VR experiences simulated environments that made you terrified, like walking a plank or standing at the edge of a cliff. And it occurred to me: if we could scare people so easily, could we trigger other emotional changes that are beneficial?

    Our approach is to use immersion to drive a deeper connection to self-contemplative thoughts. You’re immersed in this psychologically safe container that is designed to capture your awareness, to allow you to be present and connect to self. With VR, it’s not just an audio file guiding you toward connecting with your breath. We can show you your breath, like star crystals coming in and out of your mouth.

    Some of the early offerings thought VR was really only for gaming. When we first got TRIPP on Oculus, they didn’t know where to put us because they didn’t have a relaxation genre then. We were pretty buried in the store. But we started to get a little bit of traction, and we soon had surprisingly regular usage over time. VR has this problem where you go in, you go, “Wow, that was amazing!” and then it's in your closet. You never pick it up again. When we were designing the product, we knew we had to build for repeat usage. So, we built it procedurally, and now we can update it from the server and add new content regularly.

  2. Q. 

    How is science leading the design and development of TRIPP?

    A. 

    I started by looking at the research investigating VR’s effect on the brain, largely by neuroscientists and behavioral therapists exploring mental health and medical use cases for VR. Most of them focused on simulation, like simulated exposure therapy. But I wondered if, instead of simulating something, could we stimulate responses? I took that question to the researchers working on VR and its effects on mental well-being. We started digging into the research and then, based on the research data, designed VR experiences intended to trigger states of wonder and awe. We tried them out on people and captured some physiological data like heart rate and EEG to see if the experiences were directionally achieving the effect we wanted.

    We stay very grounded in research-driven design choices. We’re a bit edgy. Rather than mimicking natural environments, the experiences are deliberately psychedelic. You find yourself inside an atom or floating in space. First, we tried things like a waterfall or a beach, but when we tested them, they didn’t feel good. I found some research describing how sensory dissonance in synthetic natural environments can create a stress response. Your brain goes, “Well, it looks like a beach, but I don’t smell the ocean. So what’s wrong with this environment?” We realized we had to create environments for which you have no mental model. So we said, “OK, let’s put you in a cosmic flotation tank, whatever that means, because no one knows what space smells like.”

    We’re also starting an enterprise program to support employee wellness and team-building with a hybrid workforce, but also with a focus on using the metaverse for driving ideation and innovation. Can we use these otherworldly environments to spark creativity?
    Nanea Reeves

    After we launched, we started collecting data on mood and emotional state in the live user sessions via self-reported surveys that are based on what they use in mental health research. We bookended our sessions with users, basically asking “How do you feel?” before and after each session. We did things like randomizing the order of the response selections to control against position bias. Now, we have data collected from close to 6 million sessions that we can slice and dice by the time of day and, for a percentage of our audience who opted in, age, gender, and location. It’s become a meaningful body of data that we can share with researchers once it has been de-identified. We also work with researchers who want to study TRIPP and its potential applications. It’s been fascinating to work with that community.

    One example is this group in Germany working with cancer patients undergoing surgery, looking at the effects of TRIPP sessions on their quality of life, well-being, and mood. This study was published in Nature’s Scientific Reports. Participation was good, and patients who used TRIPP had lower heart rates and breathing rates after their sessions. They had improved scores on their mood and emotion surveys after the sessions too. What the study shows us is that VR-based relaxation is a viable option and may be beneficial for cancer patients undergoing surgery. Of course, we don’t make any therapeutic claims until we have a tremendous amount of evidence to support those claims.

    You can find other published data and scientific reports examining TRIPP’s effects on adolescents and its use in palliative care. And we’re working with researchers who are looking at whether TRIPP could help people experiencing addiction and rehab, chemotherapy, severe mental illness, anxiety, and pain. Researchers are also using TRIPP to ease anxiety and help people prepare for ketamine-assisted therapy, so they get the most out of their treatment. I feel very motivated to see how we can help and participate in these research initiatives.

  3. Q. 

    How might TRIPP change how we use VR, beyond its medical applications?

    A. 

    Earlier this year, we acquired EvolVR, which holds live group meditations. Several hundred avatars attend the most popular conversations. People really open up. Skip Rizzo, PhD, a renowned researcher in the field and an advisor to TRIPP, did a pilot study and found that people suffering from PTSD were more open and honest with an avatar. We want to further investigate this as there’s something about the “digital veil” of VR where you don’t feel the judgment of being seen by other people. I think this is a wonderful use case for the metaverse.

    We’re also starting an enterprise program to support employee wellness and team-building with a hybrid workforce, but also with a focus on using the metaverse for driving ideation and innovation. Can we use these otherworldly environments to spark creativity?

    It’s also fascinating to think about the gig economy that could emerge from the metaverse — similar to what first emerged from mobile computing. For example, I met a woman at one of our live group meditation events in the metaverse who’s earning a living as one of the top world-builders in Altspace VR. She’s a mother of five who has never worked in tech before. She’s now a programmer, building these virtual worlds.

    We’re only beginning to explore the potential of VR. It’s like the early days of mobile. Initially, no one thought we’d want to play games or even text message on our cell phones. Now, for the past decade, we have been walking around with our heads down staring at these phone screens nonstop. What kind of innovation will happen in a future when XR glasses are ubiquitous and allow us to experience the world around us in an entirely new and adaptive way?

Related content

  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
  • Staff writer
    February 4, 2026
    An early meeting between Amazon scientists and Stanford researchers led to cvc5, an open-source tool now powering approximately one billion automated-reasoning checks across AWS every day.
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Sr. Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs
JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, NY, New York
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
US, WA, Bellevue
The Amazon Fulfillment Technology (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We solve a wide range of challenges encountered throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. We are tasked with developing innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run frequently (ranging from every few minutes to every few hours per use case) and continuously across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with other scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions using a variety of tools and observe direct impact on process efficiency and associate experience in the fulfillment network. Key responsibilities include: - Develop understanding and domain knowledge of operational processes, system architecture and functions, and business requirements - Deep dive into data and code to identify opportunities for continuous improvement and/or disruptive new approaches - Develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and new challenges - Create prototypes and simulations for agile experimentation of devised solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with engineers to integrate prototypes into production systems - Design experiments to test new or incremental solutions launched in production and build metrics to track performance A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team has expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM. We also possess deep domain expertise in operational processes within FCs and their challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Resulting production systems rely on a diverse set of technologies; our teams therefore invest in multiple specialties as the needs of each focus area evolve.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, WA, Seattle
Employer: Amazon.com Services LLC Position: Economist III (multiple positions available) Location: Seattle, Washington Multiple Positions Available: 1. Partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond; 2. Build econometric models using our world class data systems and apply approaches from a variety of skillsets - applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon; 3. Work in a fast moving environment to solve business problems as a member of either a crossfunctional team embedded within a business unit or a central science and economics organization; 4. Develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company; and 5. Utilize deep knowledge in time series econometrics, asset pricing, empirical macroeconomics, or the use of micro and panel data to improve and validate traditional aggregative models. (40 hours / week, 8:00am-5:00pm, Salary Range $159,200.00/year to $215,300.00/year) Amazon.com is an Equal Opportunity – Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation