Amazon Bedrock offers access to multiple generative AI models

AWS service enables machine learning innovation on a robust foundation.

The drive to harness the transformative power of high-end machine learning models has meant some businesses are facing new challenges. Teams want assistance in crafting compelling documents, summarizing complex documents, building conversational-AI agents, or generating striking, customized visuals.

Find out about all of the recent updates designed to help even more customers build and scale generative AI applications.

In April, Amazon stepped in to assist customers contending with the need to build and scale generative AI applications with a new service: Amazon Bedrock. Bedrock arms developers and businesses with secure, seamless, and scalable access to cutting-edge models from a range of leading companies.

Bedrock provides access to Stability AI’s text-to-image models — including Stable Diffusion, multilingual LLMs from AI21 Labs, and Anthropic’s multilingual LLMs, called Claude and Claude Instant, which excel at conversational and text-processing tasks. Bedrock has been further expanded with the additions of Cohere’s foundation models, as well as Anthropic’s Claude 2 and Stability AI’s Stable Diffusion XL 1.0.

These models, trained on large amounts of data, are increasingly known under the umbrella term foundation models (FMs) — hence the name Bedrock. The abilities of a wide range of FMs — as well as Amazon’s own new FM, called Amazon Titan — are available through Bedrock’s API.

Werner Vogels and Swami Sivasubramanian discuss generative AI

Why gather all these models in one place?

“The world is moving so fast on FMs, it is rather unwise to expect that one model is going to get everything right,” says Amazon senior principal engineer Rama Krishna Sandeep Pokkunuri. “All models come with individual strengths and weaknesses, so our focus is on customer choice.”

Expanding ML access

Bedrock is the latest step in Amazon’s ongoing effort to democratize ML by making it easy for customers to access high-performing FMs, without the large costs inherent in both building those models and maintaining the necessary infrastructure. To that end, the team behind Bedrock is working to enable customers to privately customize that suite of FMs with their own data.

This digital visualization, created with Stable Diffusion XL, reveals a mesmerizing array of embeddings in the latent space of a machine learning model. Each point represents a unique concept or data point, with lines and colors representing the distances and relationships between points. Together they produce a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections.
In this digital visualization, created with Stable Diffusion XL, the latent space of a machine learning model reveals a mesmerizing array of embeddings. It is a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections. Each point represents a unique concept or data point. The environment is digital, with lines and colors representing the distances and relationships between embeddings.

“Customers don’t have to stick to our training recipes. We are working to provide a high degree of customizability,” says Bing Xiang, director of applied science at Amazon Web Services' AI Labs.

“For example," Xiang continues, “customers can just point a Titan model at dozens of labeled examples they collected for their use cases and stored in Amazon S3 and fine-tune the model for the specific task.”

Not only is a suite of AI tools offered, it is also meticulously safeguarded. At Amazon, data security is so critical it is often referred to as “job zero”. While Bedrock hosts a growing number of third-party models, those third-party companies never see any customer data. That data, which is encrypted, and the Bedrock-hosted models themselves, remain firmly ensconced on Amazon’s secure servers.

Tackling toxicity

In addition to its commitment to security, Amazon has experience in the LLM arena, having developed a range of proprietary FMs in recent years. Last year, it made its Alexa Teacher Model — a 20-billion-parameter LLM — publicly available. Also last year, Amazon launched Amazon CodeWhisperer, a fully managed service powered by LLMs that can generate reams of robust computer code from natural-language prompts, among other things.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

Continuing in that vein, a standout feature of Bedrock is the availability of Amazon’s Titan FMs, including a generative LLM and an embeddings LLM. Titan FMs are built to help customers grapple with the challenge of toxic content by detecting and removing harmful content in data and filtering model outputs that contain inappropriate content.

When several open-source LLMs burst onto the world stage last year, users quickly realized they could be prompted to generate toxic output, including sexist, racist, and homophobic content. Part of the problem, of course, is that the Internet is awash with such material, so models can absorb some of this toxicity and bias.

Amazon’s extensive investments in responsible AI include the building of guardrails and filters into Titan to ensure the models minimize toxicity, profanity, and other inappropriate behavior. “We are aware that this is a challenging problem, one that will require continuous improvement,” Xiang observed.

Related content
Prompt engineering, adaptation of language models, and attempts to remediate large language models’ (LLMs’) “hallucinations” point toward future research in the field.

To that end, during the Titan models’ development, outputs undergo extensive “red teaming” — a rigorous evaluation process aimed at pinpointing potential vulnerabilities or flaws in a model's design. Amazon even had experts attempt to coax harmful behavior from the models using a variety of tricky text prompts.

“No system of this nature will be perfect, but we're creating Titan with utmost care,” says principal applied scientist Miguel Ballesteros. “We are working towards raising the bar in this field.”

Building Amazon Titan models for efficiency

Creating the Titan models also meant overcoming significant technological challenges, particularly in distributed computing.

“Imagine you are faced with a mathematical problem with four decomposable sub-problems that will take eight hours of solid brain work to complete,” explains Ramesh Nallapati, senior principal applied scientist. “If there were four of you working on it together, how long would it take? Two hours is the intuitive answer, because you are working in parallel.

Related content
Finding that 70% of attention heads and 20% of feed-forward networks can be excised with minimal effect on in-context learning suggests that large language models are undertrained.

“That’s not true in the real world, and it’s not true in the computing world,” Nallapati continues. “Why? Because communication time between parties and time for aggregating solutions from sub-problems must be factored in.”

In order to make the distributed computing efficient and cost effective, Amazon has developed both AWS Trainium accelerators — designed mainly for high-performance training of generative AI models, including large language models — and AWS Inferentia accelerators that power its models in operation. Both of these specialized accelerators offer higher throughput and lower cost per inference than comparable Amazon EC2 instances.

These accelerators need to constantly communicate and synchronize during training. To streamline this communication, the team employs 3-D parallelism. Here, three elements — parallelizing data mini-batches, parallelizing model parameters, and pipelining layer-wise computations across these accelerators — are distributed across hardware resources to varying degrees.

“Deciding on the combination of these three axes determines how we use the accelerators effectively,” says Nallapati.

Titan’s training task is further complicated by the fact that accelerators, like all sophisticated hardware, occasionally fail. “Using as many accelerators as we do, it is a question of days or weeks, but one of them is going to fail, and there’s a risk the whole thing is going to come down fast,” says Pokkunuri.

To tackle this reality, the team is pioneering ground-breaking techniques in resilience and fault tolerance in distributed computing.

Efficiency is critical in FMs — both for bottom-line considerations and from a sustainability standpoint, because FMs require immense power, both in training and in operation.

“Inferentia and Trainium are big strategic efforts to make sure our customers get the best cost performance,” says Pokkunuri.

Retrieval-augmented generation

Using Bedrock to efficiently combine the complementary abilities of the Titan models also puts the building blocks of a particularly useful process at a customer’s disposal, via a form of retrieval-augmented generation (RAG).

RAG can address a significant shortcoming in standalone LLMs — they cannot account for new events. GPT-4, for example, trained on information up to 2021, can only tell you that “the most significant recent Russian military action in Ukraine was in 2014”.

This graphic shows embeddings of text phrases in a representational space, a question "who won the 2022 world cup" and two answers "Messi secures first World Cup after extra-time drama" and "France wins in highest-scoring World Cup final since 1996" are linked to dots in the space, the Messi answer is closer to the question
Embedding news reports in a representational space enables the retrieval of information added since the last update to an LLM; the LLM can then leverage that information to generate text responses to queries (e.g., "Who won the 2022 World Cup?").

It is a massive and expensive undertaking to retrain huge LLMs, with the process itself taking months. RAG provides a way to both incorporate new content into LLMs’ outputs in-between re-trainings and provide a cost-effective way to leverage the power of LLMs on proprietary data.

For example, let’s say you run a big news or financial organization, and you want to use an LLM to intelligently interrogate your entire corpus of news or financial reports, which includes up-to-date knowledge.

“You will be able to use Titan models to generate text based on your proprietary content,” explains Ballesteros. “The Titan embeddings model helps to find documents that are relevant to the prompts. Then, the Titan generative model can leverage those documents as well as the information it has learned during training to generate text responses to the prompts. This allows customers to rapidly digest and query their own data sources.”

A commitment to responsible AI

In April, select Amazon customers were given access to Bedrock, to evaluate the service and provide feedback. Pokkunuri stresses the importance of this feedback: “We are not just trying to meet the bar here — we are trying to raise it. We’re looking to give our customers a delightful experience, to make sure their expectations are being met with this suite of models.”

The stepped launch of Bedrock also underscores Amazon's commitment to responsible AI, says Xiang. “This is a very powerful service, and our commitment to responsible AI is paramount.”

As the number of powerful FMs grows, expect Amazon’s Bedrock to grow in tandem, with an expanding roster of leading third-party models and more exclusive models from Amazon itself.

“Generative AI has evolved rapidly in the past few years, but it’s still in its early stage and has a huge potential,” says Xiang. “We are excited about the opportunity of putting Bedrock in the hands of our customers and helping to solve a variety of problems they are facing today and tomorrow.”

Related content

US, CA, Santa Clara
AWS AI is looking for passionate, talented, and inventive Research Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Herndon
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: • Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries • Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them • Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We research and develop advanced state-of-the-art speech and language modeling technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists.
CN, 31, Shanghai
The AWS Shanghai AI Lab is looking for a passionate, talented, and inventive staff in all AI domains with a strong machine learning background as an Applied Scientist. Founded in 2018, the Shanghai Lab has been an innovation center of for long-term research projects across domains as machine learning, computer vision, natural language processing, and open-source AI system. Meanwhile, these incubated projects power products across various AWS services. As part of the lablet, you will take a leadership role and join a vibrant team with a diverse set of expertise in both machine learning and applicational domains. You will work on state-of-the-art solutions on fundamental research problems with other world-class scientists and engineers in AWS around the globe and across the boarders. You will have the responsibility to design and innovate solutions to our customers. You will build models to tame large amount of data, achieve industry-level scalability and efficiency, and along the way rapidly grow and build the team.
US, WA, Bellevue
Amazon is looking for an outstanding Senior Economist to help build next generation selection/assortment systems. On the Specialized Selection team within the Supply Chain Optimization Technologies (SCOT) organization, we own the selection to determine which products Amazon offers in our fastest delivery programs. We build tools and systems that enable our partners and business owners to scale themselves by leveraging our problem domain expertise, focusing instead on introspecting our outputs and iteratively helping us improve our ML models rather than hand-managing their assortment. We partner closely with our business stakeholders as we work to develop state-of-the-art, scalable, automated selection. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including supervised and unsupervised machine learning, non-convex optimization, causal inference, natural language processing, linear programming, reinforcement learning, and other forecast algorithms. Some critical research areas in our space include modeling substitutability between similar products, incorporating basket awareness and complementarity-aware logic, measuring speed sensitivity of products, modeling network capacity constraints, and supply and demand forecasting. We're looking for a candidate with a background in experiment design and causal analysis to lead studies related to selection and speed. Potential projects include understanding the short-term and long-term customer impact of assortment changes across different speed. As an Senior Economist, you'll build econometric models using our world-class data systems and apply economic theory to solve business problems in a fast-moving environment. You will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. To be successful in this role, you'll need to communicate effectively with product and tech teams, and translate data-driven findings into actionable insights. You'll thrive if you enjoy tackling ambiguous challenges using the economics toolkit and identifying and solving problems at scale. We have a supportive, fast-paced team culture, and we prioritize learning, growth, and helping each other continuously raise the bar. Key job responsibilities - Lead data-driven econometric studies to create future business opportunities - Consult with stakeholders in Selection and other teams to help solve existing business challenges - Independently identify and pursue new opportunities to leverage economic insights - Advise senior leaders and collaborate with other scientists to drive innovation - Support innovative delivery program growth worldwide - Write business and technical documents communicating business context, methods, and results to business leadership and other scientists - Serve as a technical lead and mentor for junior scientists, ensuring a high science bar - Serve as a technical reviewer for our team and related teams, including document and code reviews
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing the design of microwave components for cryogenic environments. Working alongside other scientists and engineers, you will design and validate hardware performing microwave signal conditioning at cryogenic temperatures for AWS quantum processors. Candidates must have a background in both microwave theory and implementation. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development from requirements development to validation. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the signal conditioning of AWS quantum processor systems at cryogenic temperatures. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems across our cryogenic signal chain. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both performance and cost metrics. Research enabling technologies necessary for AWS to produce commercially viable quantum computers. A day in the life As you design and implement cryogenic microwave signal conditioning solutions, from requirements definition to deployment, you will also: Participate in requirements, design, and test reviews and communicate with internal stakeholders. Work cross-functionally to help drive decisions using your unique technical background and skill set. Refine and define standards and processes for operational excellence. Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Our Prime Air Drone Vehicle Design and Test team within Flight Sciences is looking for an outstanding engineer to help us rapidly configure, design, analyze, prototype, and test innovative drone vehicles. You’ll be responsible for assessing the Aerodynamics, Performance, and Stability & Control characteristics of vehicle designs. You’ll help build and utilize our suite of Multi-disciplinary Optimization (MDO) tools. You’ll explore new and novel drone vehicle conceptual designs in both focused and wide open design spaces, with the ultimate goal of meeting our customer requirements. You’ll have the opportunity to prototype vehicle designs and support wind tunnel and other testing of vehicle designs. You will directly support the Office of the Chief Program Engineer, and work closely across all vehicle subsystem teams to ensure integrated designs that meet performance, reliability, operability, manufacturing, and cost requirements. About the team Our Flight Sciences Vehicle Design & Test organization includes teams that span the following disciplines: Aerodynamics, Performance, Stability & Control, Configuration & Spatial Integration, Loads, Structures, Mass Properties, Multi-disciplinary Optimization (MDO), Wind Tunnel Testing, Noise Testing, Flight Test Instrumentation, and Rapid Prototyping.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Large Language Models (LLM)? We are embarking on a multi-year journey to improve the shopping experience for customers using Alexa globally. In 2024, we started building all Shopping experiences leveraging LLMs in the US. We create customer-focused solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. We are seeking an Applied Scientist to lead a new, greenfield initiative that shapes the arc of invention with Machine Learning and Large Language Models. Your deliverables will directly impact executive leadership team goals and shape the future of shopping experiences with Alexa. We’re working to improve shopping on Amazon using the conversational capabilities of LLMs, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, across the breadth of Amazon Shopping and AGI to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, WA, Seattle
The vision for Alexa is to be the world’s best personal assistant. Such an assistant will play a vital role in managing the communication lives of customers, from drafting communications to coordinating with people on behalf of customers. At Alexa Communications, we’re leveraging Generative AI to bring this vision to life. If you’re passionate about building magical experiences for customers, while solving hard, complex technical problems, then this role is for you. You will operate at the intersection of large language models, real time communications, voice and graphical user interfaces, and mixed reality to deliver cutting-edge features for end users. Come join us to invent the future of how millions of customers will communicate with and through their virtual AI assistants. Key job responsibilities The Comms Experience Insights (CXI) team is looking for an experienced, self-driven, analytical, and strategic Data Scientist II. We are looking for an individual who is passionate about tying together huge amounts of data to answer complex stakeholder questions. You should have deep expertise in translating data into meaningful insights through collaboration with Data Engineers and Business Analysts. You should also have extensive experience in model fitting and explaining how the insights derived from those models impact a business. In this role, you will take data curated by a dedicated team of Data Engineers to conduct deep statistical analysis on usage trends. The right candidate will possess excellent business and communication skills, be able to work with business owners to develop and define key business questions, and be able to collaborate with Data Engineers and Business Analysts to analyze data that will answer those questions. The right candidate should have a solid understanding of how to curate the right datasets that can be used to train data models, and the desire to learn and implement new technologies and services to further a scalable, self-service model.