Can you teach a computer to smell? Osmo is trying

The company’s work, supported by the Amazon Alexa Fund, has relevant applications for areas from perfumes to disease detection.

At the age of 12, Alex Wiltschko bought his first perfume, Azzaro pour Homme. He’d read about it in his favorite book — Perfumes: The Guide, by Luca Turin — and was thrilled to find it at a knock-down price at his local TJ Maxx. It would be the first in a large collection.

For as long as he can remember, Wiltschko has been obsessed by scent. “It’s how I’m wired,” he says. His other obsession? Computers. “An interest in perfumes and computers was not the recipe for social success as an adolescent,” he adds.

It was, however, the recipe for a life trajectory that took Wiltschko deep into the neuroscience of olfaction and cutting-edge machine learning. This combination has placed Wiltschko at the forefront of the nascent science of digital olfaction — a.k.a. giving computers a sense of smell.

Wiltschko is now the CEO of Osmo, a Google Research spinout based in Cambridge, Massachusetts. In September 2022, the company hit the ground running with $60 million in initial funding, including an investment from the Amazon Alexa Fund.

In the short term, Osmo aims to unlock a new era of commercial fragrance innovation. Longer term, the company envisions its technologies having the potential to save lives through the development of better insect repellents and even digital diagnostic tools for detecting serious illnesses on a person's breath.

The Principal Odor Map

The keystone to all this is the team’s breakthrough advance: the creation of what it calls the Principal Odor Map (POM).

Before vision could be digitized, a map called RGB was required: It shows how every color is made up of varying proportions of red, green, and blue. Before Osmo was spun out, Wiltschko’s team did something similar — and remarkable — with odor. They used machine learning to map the structure of a molecule directly to how humans perceive the smell of that molecule. In other words, they built a model that can tell you what a molecule smells like just by looking at it. This is the POM.

That was an ‘a-ha!’ moment for us, akin to passing a Turing test for odor. We'd built something with real commercial value that was sufficiently validated to bring into the world.
Jon Hennek

Here’s how they created POM and, crucially, how they proved it worked. They first trained a graph neural network (GNN) on about 5,000 molecules from several flavor and fragrance databases. The smells of all these molecules were well-documented with multiple human-judged odor labels such as beefy, floral, or minty. From this, the model was able to learn connections between molecular structure and odor, without needing any knowledge of what actually happens in the nose or brain of a person sniffing an odor.

That’s great, as far as it goes. The crucial question then was, could POM generalize to predict the smell of molecules it had never seen before, based solely on their molecular structure? And could it do that as well as trained human raters, which is the gold standard for odor characterization? To find out, the team took a diverse set of more than 400 odor molecules previously unseen by POM and had the model blindly predict their characteristics. Then a panel of trained human raters sniffed and labeled those same odors.

When the Osmo team compared the results, they were delighted. Not only had the model successfully predicted the odor of these unseen molecules as well as trained humans, but its predicted odor profiles were closer to the average results of the panel than any of the individual panelists themselves.

“That was an ‘a-ha!’ moment for us, akin to passing a Turing test for odor,” says Jon Hennek, chief product officer at Osmo. “We'd built something with real commercial value that was sufficiently validated to bring into the world.”

Islands of odor

POM is not a map in the typical sense, but it can nevertheless be compared to the RGB map. Pick two points at random on a two-dimensional color map. The closer those two points are to each other, the more similar the color. The same is true for odors in POM, though this map exists in a mind-bending 256 dimensions. All of the tulip-smelling molecules are close to each other, for example. Ditto for the brandy-smelling molecules.

“Zooming out a little, all the flowers are next to each other. There's a whole floral Pangaea in this odor map! We didn't tell it to do that,” says Wiltschko. This sort of grouping is also true for woods, bakery-type smells, alcoholic smells, you name it. Our brain seems to organize smells in nested hierarchies, says Wiltschko, so the rose odor is inside the rose category, inside the flowers category, inside the plants category, inside the pleasant category.

“The fact that we were able to observe this in the POM without telling it is astounding,” he says.

On the left is a color map (the CIE 1931 color space chromaticity diagram), similar colors lie near each other. On the right is Osmo’s Principal Odor Map, individual molecules (grey points) are found nearer to each other if they are predicted to smell similar.
In this color map (the CIE 1931 color space chromaticity diagram), similar colors lie near each other. Likewise, in Osmo’s Principal Odor Map, individual molecules (grey points) are found nearer to each other if they are predicted to smell similar.
Courtesy of Osmo

While Wiltschko has bold ideas for the future of Osmo’s technology, the first order of business is putting the company on a solid commercial footing. For now, Osmo is concentrating on developing new ingredients for the global fragrance category.

The Osmo team is using POM to explore the world of odor molecules — several billion of them — and homing in on molecules that POM predicts to have an interesting and strong olfactory character.

“We're much better at that, I believe, than anybody else in the world,” says Hennek. “Because rather than start with rules of thumb and chemical intuition, we are starting with an odor prediction for every molecule we could possibly synthesize. It lets us find molecules that a chemist might never have considered.”

The team is working with advisors, including Christophe Laudamiel, a French master perfumer, and potential customers include fragrance houses and packaged goods companies.

More from Alexa Fund
Alexa Fund company’s assisted reality tech could unlock speech for hundreds of millions of people who struggle to communicate.

“We've had repeated feedback that our ingredients have the potential to be very successful, commercially,” says Wiltschko. “That smells like product/market fit.” The principal idea is to license those molecules to fragrance houses.

It’s a timely endeavor. The global fragrance category is valued at more than $10 billion and growing steadily. But some traditional ingredients, such as sandalwood oils, can result in over-harvesting or other ecological harm, while the characteristics of other ingredients increasingly fall short as the demand grows for safer, more biodegradable products.

With POM, Osmo is paving the way for palettes of safe, synthetic fragrances that recreate natural odors using environmentally friendly and easily synthesized molecules. To that end Osmo is looking at combinations of just a handful of atoms: carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur.

“Then we bring them into our lab for a process akin to a drug discovery pipeline,” says Hennek. “We are working towards regulatory approval of those molecules.”

Rise of the graph neural networks

All of this has only become possible in the last six years or so. The core insight that started this scientific project, says Wiltschko, was that machine learning was “getting really good at molecules,” thanks to the recent rise of GNNs.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

Previously, machine learning approaches primarily converted inputs — images or data arrays, say — into rectangles or data grids to process them. Molecules didn’t fit this mold: a molecule might be two atoms, or it might be 20 atoms, with wildly different structure and connectivity. They are simply not reducible to rectangles or grids.

Instead, the atoms in a molecule can be considered as nodes, and the chemical bonds between them as edges, forming a graph structure. This representation allows GNNs to model and process molecular data.

“Some of this technology was developed by friends of mine at Google. So, it was a fantastic, fertile ground to start exploring this idea,” says Wiltschko.

This ongoing exploration is creating some exciting possibilities. Wiltschko reasoned that, just as the sun has shone on Earth since before life began, resulting in many creatures evolving similar visual apparatuses, the composition of the Earth’s atmosphere has been broadly stable over evolutionary time. So could POM also be used to understand the olfactory responses of other species, even those separated from humans by millions of years of evolution?

Life-saving potential

Take mosquitos. Could POM be used to work out what odors repel these disease-carrying insects?

To find out, they augmented POM with additional data sources. The first was a long-forgotten U.S. government report, published in the 1940s, that featured the results of testing 19,000 compounds for their mosquito repellency. The second was information provided by TropIQ, a Dutch company that develops malaria-control technology. The augmented model was soon able to predict entirely new molecules with repellency at least as powerful as DEET, the active ingredient in the most effective mosquito repellents.

osmo image 2.png
Osmo digitized mosquito-repellency data for 19,000 compounds reported on by the United States Department of Agriculture and used that to refine its model (left). The team then predicted candidate molecules that would be most repellent to mosquitos, produced the most viable options, tested them on real mosquitos, and fed those results back into the model to further refine it.
Courtesy of Osmo

The development of cheaper, more effective, and safer insect repellents could have a huge impact on global health. Wiltschko has nothing to announce yet, but says this research is ongoing in collaboration with the Bill & Melinda Gates Foundation.

Applying POM to mosquitos is also a proof of concept, says Hennek. “We can picture applying our product not just to what mosquitoes don’t like, but to what roaches don’t like. Or any number of agricultural pests.”

Capturing smell forever

Looking further down the road, Wiltschko’s vision is to digitize our sense of smell. The idea is not as far-fetched as it sounds. Consider several hundred years ago. The idea that a visual moment — the fleeting expression on your child’s face or an orchard of apple trees in blossom — could be instantly captured and made available forever more in perfect color would have been nothing short of magical thinking.

By the 1820s came the first photography, and with it, the first steps towards human mastery of the world of light. Today, it feels like a fundamental right to freeze those visual memories and hold on to them forever. And the same goes for the auditory world.

“We know what’s required to digitize a human sense,” says Wiltschko. “And we don't have to wait for any of the inventions that vision did — particularly integrated circuits.”

Indeed, with modern computing power and the harnessing of machine learning, Wiltschko reckons computers will have a “sense of smell” within a decade or two. Three stages are required: “reading” smell, understanding it, and “writing” it. Osmo wants to understand, and ultimately curate a wide palette of safe, synthetic molecules that can recreate the entire human smellscape. The reading (sensing) of odorous molecules currently requires bulky and expensive lab equipment, such as a gas chromatography mass spectrometer, while the writing (producing) of smells on demand remains science fiction at the consumer level, says Wiltschko, for now.

A window to the inside

Sensing and understanding odor at a high level may be sufficient to herald powerful health applications, says Wiltschko. For example, it is well established that serious illnesses, including some cancers, can be detected through their effect on your breath. Being able to take a snapshot of that odor profile — an “Osmograph”, in Wiltschko’s words – could reveal a great deal about what’s going on inside our bodies.

“We don't know if that technology will ultimately have a transformative effect on healthcare, but I am betting that it will,” he says.

Related content
ARA recipient Marinka Zitnik is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies.

It’s very important to Wiltschko that, down the line, Osmo grows to develop clinical diagnostics applications. “That's the North Star for me, and it's very important that we get there. But the sheer cost and the talent that's required is rare and expensive,” he says. “So, it can’t be the first beach that we storm.”

As Osmo grows, it will be looking for similarly passionate people to push the mission forward. “We've been finding that there are people out there who are secret scent lovers, who secretly aspire to work in the field of machine olfaction,” says Wiltschko. “Just to put it out there: there's one place to do this, and it's Osmo.”

Talking to Wiltschko and those inspired to work alongside him, it is clear to see that Osmo is the culmination of his lifelong passions. For him, it’s emotional. “Once you smell a thing, you cannot stop the feelings that you get from it. There's a very fundamental feeling and emotional component,” he says, “and I think that’s beautiful.”

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.