Five ways Amazon is preparing for the energy demands of the future

From investing in new carbon-free energy projects to advocating for grid modernization and collaborating with key stakeholders around the world, Amazon is working toward a cleaner energy future.

As our society relies on technology more than ever, from consumer electronics to large-scale infrastructure in both public and private sectors, global energy demands are continuing to grow. At Amazon, we’re working to meet the future energy demands of our customers and our business while remaining committed to our Climate Pledge to become net-zero carbon by 2040. We know the path forward is changing, and our work to decarbonize our operations won’t be linear, so we’re constantly experimenting, learning, and evolving.

Here are five ways Amazon is innovating to ensure our energy needs are met with sustainability and efficiency in mind:

  1. Matching 100% of the electricity consumed by our operations with renewable energy

    Amazon achieved our goal to match all of the electricity consumed by our operations with 100% renewable energy. We originally pledged to reach this goal in 2030, and achieved it seven years early in 2023. In order to achieve this ambitious goal, we’ve invested in more than 500 solar and wind projects around the world, representing more than 28 gigawatts (GW) of new energy capacity once operational. Once all of these projects become operational, they’re expected to produce enough energy to power more than 7.6 million average U.S. homes each year. We’ve also been the world’s largest corporate purchaser of renewable energy every year since 2020.

    Looking ahead, increasing energy demands—including those driven by generative AI—will require us to add more sources of carbon-free energy, including nuclear, offshore wind, green hydrogen, and more. In addition, Amazon’s $2 billion Climate Pledge Fund is investing in the next generation of emerging low-carbon energy technologies, including green ammonia, renewable transportation fuels, portable battery storage, and other innovations that can help power the future energy needs of our business and the transition to a lower-carbon economy.

  2. Advocating for grid modernization

    In most cases, when we invest in new carbon-free energy projects like wind and solar farms, that energy goes into the public power grids in those areas—meaning those communities are also benefitting. We want electric grids where we operate to be net-zero carbon for everyone. But right now, grids across the country are limited in how much energy they can accept. While we’re working with utilities and energy companies to fast-forward new solar, wind, and other carbon-free energy projects to meet rising demand, the grid also needs to be modernized so it can handle that demand. More than 70% of the U.S. grid is 25 years old or older, and across the United States, there are currently more than 2.6 million megawatts (MW) of renewable energy and storage projects waiting to come online—nearly double the current amount of U.S. generation capacity, or enough carbon-free energy to power 63.3 million US homes. To help address this, Amazon teams are engaging with energy regulators and other officials at the federal and state levels to help support grid modernization, remove permitting obstacles, and deploy grid-enhancing technologies.

    We’re also working with grid operators and utilities to help ensure grid modernization is funded in the markets where we do business. Like all ratepayers, Amazon pays transmission costs for the energy we use, and those rates are established by utility regulators. Those costs help cover infrastructure upgrades and other grid modernization needs required to support the needs of all energy users.

  3. Deploying renewable energy where it’s needed most

    To have the biggest impact, we focus most of our investments on the grids where our operations are concentrated, as well as regions where the existing grid is most carbon intensive. For example, we have a large AWS presence in Oregon, so we’re working with utility company Umatilla Electric to procure new sources of renewable energy, such as electricity purchased from a local wind farm, to help increase the amount of renewable energy to the local grid.

    We also make a point to invest in renewables projects in places that otherwise rely heavily on fossil fuels like coal, oil, and natural gas to power their grids, such as India, Poland, and the southeastern U.S. To support this effort, Amazon cofounded the Emissions First Partnership, a coalition of companies committed to modernizing the greenhouse gas accounting standards for the power sector, which will encourage companies to invest in renewable and carbon-free energy in more carbon-intensive grids. Both of these approaches help reduce energy-related emissions and match the electricity used by our operations with renewable energy, a win-win for people and the planet.

  4. Taking steps to run our data centers more efficiently

    We’re constantly reevaluating how our data centers operate and determining ways to help them run on less energy and be more efficient. And as the world scales our use of AI, it's important to also minimize its environmental footprint. A new study by Accenture shows that an effective way to do that is by moving IT workloads from on-premises infrastructure to AWS data centers around the globe. The research estimates AWS’s infrastructure is up to 4.1 times more efficient than on-premises, and when workloads are optimized on AWS, the associated carbon footprint can be reduced by up to 99%. This type of impact is possible by AWS optimizing our data center design, investing in purpose-built chips, and innovating with new cooling technologies. For example, we’ve taken steps to design our data centers to use natural air flow to lower server temperatures, which can heat up while in use. This allows us to use less air conditioning when possible. We’ve also designed our AWS machine learning chips, which power millions of workloads daily, to be more energy efficient. For example, AWS’s Graviton processor delivers high performance with high levels of energy efficiency. Graviton4 provides up to 30% better computing performance, 50% more cores, and 75% more memory bandwidth than current-generation Graviton3 processors, delivering the best price performance and energy efficiency for a broad range of workloads running on Amazon EC2. We’re also keeping technologies in use longer by increasing the lifespan of our servers from five to six years.

  5. Incorporating sustainability practices into the design and construction of our buildings

    We’re working to design our corporate buildings in ways that support the transition to net-zero carbon, including by constructing new buildings using low-carbon concrete and electrified HVAC systems. One of our newest Same-Day fulfillment centers in California is set to make history as the world’s first fulfillment facility to achieve Zero Carbon Certification status. The electricity used by our HQ2 headquarters is matched with 100% renewable energy from a local solar farm and has achieved the highest level of LEED green building certification. We’ve also installed energy-efficient lighting, low-flow water fixtures, and implemented recycling and composting in our corporate offices. In Europe and in the U.S., our data centers are transitioning to renewable diesel in our generators, which can result in as much as 90% fewer greenhouse gas emissions over the fuel’s life cycle compared to diesel.

    Amazon is continuing to work toward transitioning our business and our society to a cleaner energy future.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
FR, Paris
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
Our team’s mission is to build the world’s most useful agent, and we’re looking for a Data Engineer to build the pipelines and tools for collecting and analyzing a wide range of human data. You’ll work alongside world class AI researchers, engineers, and program managers to identify and implement the best processes for human data collection. This role is highly cross-functional, leveraging skills across data science, machine learning engineering, and project management to ensure our team collects the most effective agentic training data in a rapidly-evolving technological environment. Key job responsibilities * Work closely with researchers engineers to create robust data pipelines and data collection tools. * Work closely with program managers to optimize data collection processes. * Simplify and enhance the accessibility, clarity, and usability of large or complex datasets through the development of advanced dashboards and applications. * Take ownership of the design, creation, and upkeep of metrics, reports, analyses, and dashboards to inform data collection projects. * Develop and manage scalable, automated, and fault-tolerant data solutions using cutting-edge technologies such as Spark, EMR, Python, Redshift, Glue, and S3. * Continually improve ongoing reporting and analysis processes, automating or simplifying self-service support for datasets.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve extreme-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air team! We're looking for an outstanding Applied Scientist with either some background or strong interest in building simulation tools and algorithms for orchestration of a fleet of autonomous delivery drones. Managing a large number of concurrent autonomous drone flights that share airspace with other autonomous or manned aircrafts is a challenging problem. Be part of the team building simulation tools and algorithms to solve this at scale. This role will contribute to a portfolio of simulation tools managing concurrent airspace traffic for aviation systems. The ideal candidate is comfortable with a degree of risk taking and ambiguity and able to build consensus on the critical path. If you enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before, Prime Air could be the place for you. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver and directly impact Amazon’s customer’s worldwide. About the team Prime air has ambitious goals to offer its service to an increasing number of customers and enabling a large number of concurrent flights is central to achieving this. To this end, the air traffic management team is building algorithms, tools and services for orchestration of prime air's autonomous drone fleet.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. We are seeking an Applied Scientist who has a solid background in applied Machine Learning and Data Science, deep passion for building data-driven products, ability to formulate data insights and scientific vision, and has a proven track record of executing complex projects and delivering business impact. Key job responsibilities • Data driven insights to accelerate acquisition of new members. • Develop and implement personalized marketing strategies and campaigns tailored to individual customer preferences, behaviors, and demographics to enhance engagement and drive customer loyalty. • Develop, implement, and optimize marketing attribution models to accurately measure the impact of various marketing channels and campaigns, and create valuation frameworks to assess the ROI and contribution of each channel to overall business objectives. • Work with a group of both applied scientists and software engineers to deliver machine-learning and data science solutions to production. • Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Mentor talented members, provide technical and career development guidance to both scientists and engineers in the organization. About the team The Marketing Science team applies scientific methods and research techniques to enhance our understanding of AB consumer behavior, market trends, and the effectiveness of marketing strategies. Our goal is to develop and advance theories and models that can be used to make informed decisions in marketing and to provide insights into consumer decision-making processes. Additionally, we seek to identify and explore emerging trends and technologies in marketing, and to develop innovative approaches for addressing the challenges and opportunities in the field.