Animation shows a flow of dots (historical data) flowing through a CloudTune forecasting icon to generate forecasts, it also includes some detailed shots of pretend peak event forecasts for the US and India.
CloudTune Forecasting, which uses past data to generate forecasts, was initially intended to help US service teams know how much computational capacity they needed for peak events. Since then, improvements have focused on differentiating across teams and regions around the world.

How CloudTune generates forecasts for the Amazon Store

The system has expanded from generating peak computation-load forecasts one year in advance to a series of forecasts that include per-minute forecasts several months into the future.

On what are known as game days to teams inside Amazon, millions of virtual “customers” log on to the Amazon Store to search for items, browse product pages, load shopping carts, and check out as if they were real customers hunting for bargains during a sale such as Prime Day.

Jeff Barr, chief evangelist for AWS, shares what he calls some of the "most interesting and/or mind-blowing metrics" from Prime Day.

“It’s like a fire drill, a planned practice,” said Molly McElheny, a principal technical program manager in Central Reliability Engineering at Amazon. McElheny is responsible for helping to oversee those game days, which her organization runs at strategically chosen times in advance of big sales. Their goal? Make sure the Amazon Store and the many teams who help it run smoothly are ready ahead of time for potentially massive spikes in traffic.

That planned practice draws on forecasts of traffic and loads on Amazon services generated by CloudTune, a system that serves as a communications vehicle between the teams who plan events such as Prime Day and service teams that own infrastructure components and help run the Amazon Store.

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

CloudTune Forecasting emanated from Amazon’s central economics team back in 2015 as an improved methodology for capacity planning to handle major events such as Prime Day and Black Friday, explained Oleksiy Mnyshenko, a senior manager and economist at Amazon.

“These events have large peak-to-mean spreads,” he noted. “This means we need to proactively model the expected peak load and continuously assess our AWS capacity needs to support it.”

Demand forecasting

The CloudTune Forecasting system has expanded over the years from generating peak computation-load forecasts one year in advance in the United States to a series of forecasts that range from per-week forecasts up to two years out to per-minute forecasts several months into the future. In addition, those forecasts — which are continually refreshed with new data — are now also generated for a wide variety of Amazon teams and regions around the world.

While the need for specific regional forecasts may be obvious — a Mother’s Day sale forecast in the United States will not be relevant for a Diwali sale in India — many unique service teams that support the Amazon Store also rely on these forecasts.

When you go to the Amazon Store, ... in the background, there are thousands of software systems that together constitute what the experience is, and all of these systems and teams owning them need to be ready for these peak events.
Oleksiy Mnyshenko

One team may be responsible for the home page in a specific region, whereas another team is responsible for the shopping cart experience there, and yet another handles the checkout process. Each team experiences traffic differently and, necessarily, consumes AWS computing power differently. Over time, teams at Amazon have collaborated to improve CloudTune forecasts to be useful for each of those teams and their specific concerns.

“When you go to the Amazon Store, it feels very seamless as you go from searching for something to navigating to details about the product to then checking out, but in the background, there are thousands of software systems that together constitute what the experience is, and all of these systems and teams owning them need to be ready for these peak events,” Mnyshenko said.

In the early years, CloudTune forecasts were geared primarily to help service teams know how much computational capacity they needed for peak events. Since then, improvements have focused on differentiating across teams and regions. As the Amazon Store continued to grow, it became important to extend demand outlook to a two-years-out aggregate forecast per region to help inform decisions for AWS related to computing power, networking, and data center planning.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“A data center is not built in a day,” noted Chunpeng Wang, a senior applied scientist at Amazon who works on the CloudTune forecast team. “Our forecasts are an important input into long-term capacity planning for AWS.”

What’s more, the Amazon Store is not alone in contending with peak events, noted Ben Mildenhall, a senior manager in cloud computing and auto scaling.

“Many AWS external customers have Black Friday and Cyber Monday events as well,” Mildenhall said. “So it’s important we optimize to give all of our customers a great experience.”

CloudTune forecasts provide inputs to AWS to help size infrastructure in a way that maximizes utilization efficiency, noted Mnyshenko. “The way CloudTune specifically helps here is continuously getting better at anticipating the mix of capacity we’re using by generation, by type, by location, so that we can have those conversations and provide this feedback to AWS,” he said.

Granular, flexible, and explainable

Like many demand-forecasting applications, CloudTune is a time-series forecasting system. What’s unique about it is the ability to predict demand at one-minute granularity, noted Mnyshenko. This level of granularity provides insight into patterns such as short-duration spikes in website traffic. Teams use the forecasts as inputs to determine their computing capacity not just for peak events like back to school but also peak times during any given day, week, or month.

“Our comparative advantage is intra-day load predictions at one-minute granularity, allowing us to track actuals during peak events, highlighting these sharp edges where checkout spikes way beyond the natural peak for the period,” Mnyshenko said.

In addition, CloudTune forecasts need to be flexible to accommodate changes in the day and duration of events, such as the evolution of Prime Day from a 24-hour event to a 48-hour event on different days each year.

Related content
Part-time sabbatical plan turns into full-time role for author of five books and more than 170 research articles.

At other times, CloudTune needs to make forecasts for special events such as the launch of popular gaming consoles, which may sell out in a matter of minutes.

“That can create a huge spike, and we have to predict the traffic spike and the order spike,” explained Ebrahim Nasrabadi, a senior manager of applied science who leads the CloudTune Forecasting science team.

The team responsible for CloudTune Forecasting has developed modular and configurable models to address these and other challenges, he noted.

For example, built-in functionality allows the removal of outliers — due to things such as a spike in robot traffic that can decrease or increase actual website traffic and order rate unexpectedly — from predictable seasonal behavior and known calendar events. Since these interruptions do not regularly occur, the tool allows forecast teams to exclude those outliers from data used in the forecast.

“Our models are simple and quite flexible to include additional variables and seasonality,” noted Nasrabadi. The models also take into account significant changes in a trend within a dataset, also known as a slope break.

The CloudTune team also emphasizes forecast models that are explainable.

“We have to be very crisp about what we are doing, very transparent about our expectations,” said Wang.

Hundreds of Amazon Store software teams use these forecasts to help determine their AWS capacity needs for peak events. The better these teams understand the forecasts, the more trust they have in them, noted Mnyshenko.

“We need to be able to explain what goes into the ingredients and, more importantly, what we are doing to reduce the spread in errors,” he said.

Continuous automation

Currently, service teams not yet using automation enhancements take the CloudTune forecasts and translate them into capacity orders for servers through the Amazon Elastic Compute Cloud (Amazon EC2) using many different manual tools and processes, said Doug Smith, a senior technical program manager responsible for delivering improvements and features to the CloudTune toolset.

A key future direction for CloudTune is to continuously enhance these tools and automate as many manual processes as possible, Smith noted.

The world we’re envisioning between our team and CloudTune is one where services teams don’t have to worry about scaling at all.
Molly McElheny

“We’re moving into automation so that we can take our CloudTune forecasts as inputs into these new products that we’re building to provide a hands-off experience,” he said.

And while the game days McElheny’s team runs in advance of these major events will continue apace, she has a vision for the future there as well. Today, she said, the forecasts enable simulations of high-level customer journeys. She’d like to get to a forecast that allows her team to simulate an event down to the types of products customers are ordering when and where.

“This matters because different services get called depending on a lot of different factors. The closer we can simulate the real traffic the better, because we’re actually hitting services with the traffic they expect to see during the event,” McElheny said.

To get there, McElheny, Smith, and their colleagues work together to make sure the forecasts provide the best data for the most realistic simulations.

“The world we’re envisioning between our team and CloudTune is one where services teams don’t have to worry about scaling at all,” McElheny said. “CloudTune does it for them, and then we run a game day, and as we find issues during game day, CloudTune goes and places orders to scale things up for those customers.”

Research areas

Related content

US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.