How Project P.I. helps Amazon remove imperfect products

A combination of generative AI and computer vision imaging tunnels is helping Amazon proactively improve the customer experience.

Although there are hundreds of millions of products stored in Amazon fulfillment centers, it’s very rare for customers to report shipped products as damaged. However, Amazon’s culture of customer obsession means that teams are actively working to find and remove even that relatively small number of imperfect products before they’re delivered to customers.

Related content
Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.

One of those teams includes scientists who are using generative AI and computer vision, powered by AWS services such as Amazon Bedrock and Amazon SageMaker, to help spot, isolate, and remove imperfect items.

Inside Amazon fulfillment centers across North America, products ranging from dog food and phone cases to T-shirts and books pass through imaging tunnels for a wide variety of uses, including sorting products based on their intended destination. Those use cases have been extended to include the use of artificial intelligence to inspect individual items for defects.

For example, optical character recognition (OCR) — the process that converts an image of text into a machine-readable text format — checks expiration dates on product packaging to ensure expired items are not sent to customers. Computer vision (CV) models — trained with reference images from the product catalog and actual images of products sent to customers — pore over color and monochrome images for signs of product damage such as bent book covers.

Amaozn Science Project P.I. Private Investigator

Additionally, a recent breakthrough solution leverages the ability of generative AI to process multimodal information by synthesizing evidence from images captured during the Amazon fulfillment process and combining it with written customer feedback to trigger even faster corrective actions.

This effort, referred to collectively as Project P.I., which stands for “private investigator”, encompasses the team’s vision of using a detective-like toolset to uncover both defects and, wherever possible, their cause — to address the issue at its root before a product reaches the customer.

"We want to equip ourselves with the most powerful, scalable tools and levers to help us protect our customers’ trust,” said Pingping Shan, director of perfect order experience at Amazon.

Defect detection

Project P.I. is an outgrowth of Amazon’s product quality program, and the tools and systems developed by the team’s scientists include machine learning models that assist selling partners with listing products with accurate information.

“The product quality team is constantly looking for ways to both reduce the burden on the sellers and to proactively verify the condition of inventory in fulfillment centers,” Shan said.

An early solution was an OCR model that checks the labeling information when inventory arrives and compares that to the information in Amazon’s database. If a mismatches occurs — such as a pallet of dog food with an earlier sell-by date than the date in the database — the team can isolate and inspect the pallet and prevent any expired products from reaching the customer.

When an item-level defect is detected, Amazon takes several steps to resolve the issue, including investigating whether the item is one in a defective batch and, if so, isolating the batch from the rest of the items, explained Angela Ke, a senior product manager.

“We want to make sure that customers don’t have to experience issues with product quality. That’s really the vision of Project P.I.,” she said. “We want to get it right for customers the first time, so we want to inspect the products before they leave our fulfillment center, and we incorporate AI to streamline the workflow.”

Customer feedback aids model training

Despite the team’s best efforts, sometimes product quality issues only become known after an item has been delivered to customers, noted Mark Ma, a principal product manager. Those arise in cases where customers have filed a return noting the issue. In those instances, the team tracks down the batch the product came from, verifies the issue, removes those items from fulfillment center shelves, issues refunds, and communicates the issue to the seller.

“We know that that correcting the defects after they happen is not the best way to protect and improve the customer experience. That’s why we started exploring what kind of data we can gather further upstream,” he said. Those discussions eventually led to leveraging the tunnel images to better identify products with defects and take surgical and proactive action to address them — before they’re packaged and shipped.

Related content
DocFormerV2 makes sense of documents using local features, outperforming much bigger models.

One of the early challenges with that approach entailed training CV models to correctly identify defects, noted Vincent Gao, a senior science manager on the product quality team.

“It’s like finding a needle in a haystack,” he said. “We needed a model that could accurately identify those among all the other normal products. Otherwise, we could be finding a lot of false positives making the fulfillment process inefficient.”

Gao’s team turned to an ensemble approach that combines self-supervised models with supervised transformer models —a neural-network architecture that uses attention mechanisms to improve performance on machine learning tasks — to spot the difference between normal and defective items. By learning what the “correct” product looks like from fulfillment center images associated with normal orders, the model can compare an item on its way to be packaged against its “normal” image and provide a measurement of how much it differs.

This approach allowed the team to more reliably spot obvious product defects, such as a book with a torn cover or an empty canister of tennis balls, yet it still couldn’t account for some of the fine grain details like a mislabeled T-shirt size or bent box.

To achieve that, the team turned to customer feedback to help train a variety of ML models that can spot the difference between normal and defective items. This more detailed, labeled data was used to refine the model to detect the types of defects customers notice.

“Using that, we are able to be more targeted on the areas that we want to identify so that we can enable the models to learn more on those finer details,” Gao said.

Leveraging generative AI

Today, the science team is leveraging breakthroughs in generative AI to make product defect detection more scalable and robust. For example, the team launched a multimodal large language model (MLLM) that’s been trained to identify damage such as broken seals, torn boxes, and bent book covers, and report in plain language the damage it detects.

The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision.
Vincent Gao

“We use the MLLM to ingest and understand the images from fulfillment centers to identify damage patters with zero-shot learning capability — meaning the model can recognize something it has not seen in training. That is a significant plus when it comes to identifying damage patterns given their vast variation,” Ma explained. “Then we use the model to summarize common damage patterns, which enable us to work more upstream with our selling partners and manufactures to proactively address these issues.”

With traditional CV technologies, a model would be trained for each damage scenario – broken seal, torn box, etc. – Gao said, resulting in an unscalable ensemble of dozens to hundreds of models. The MLLM, on the other hand, is a single and scalable unified solution.

“That’s the new power we now have on top of the classic computer vision,” Shan said.

The Project P.I. team has also recently put into production a generative AI system that uses an MLLM to investigate the root cause of negative customer experiences. The system first reviews customer feedback about the issue and then analyzes product images collected by the tunnels and other data sources to confirm the root cause.

Related content
Novel architectures and carefully prepared training data enable state-of-the-art performance.

For example, if a customer contacts Amazon because they ordered twin-size sheets but received king-size, the generative AI system cross-references that feedback with fulfillment center images. The system will ask questions such as, “Is the product label visible in the image?” “Does the label read king or twin?”

The system’s vision-language model in turn looks at the images, extracts the text from the label, and answers the questions. The LLM converts the answers into a plainspoken summary of the investigation.

“The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision,” said Gao. “We can actually have the LLM trigger the vision-language model to finish all the different verification tasks.”

Proof of concept in the fulfillment center

Since May 2022, the product quality team has been rolling out their item-level product defect detection solutions using imaging tunnels at several fulfillment centers in North America.

The results have been promising. The system has proven itself adept at sorting through the millions of items that pass through the tunnels each month and accurately identifying both expired items and issues such as wrong color or size.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

In the future, the team aims to implement near real-time product defect detection with local image processing. In this scenario, defective items could be pulled off the conveyor belt and a replacement item automatically ordered, thus eliminating disruptions to the fulfillment process.

“Ultimately, we want to be behind the scenes. We don’t need our customers to know this is going on,” said Keiko Akashi, a senior manager of product management at Amazon. “The customer should be getting a perfect order and not even know that the expired or damaged item existed.”

Sidelining defective items will also result in fewer returns, which has an added sustainability benefit, noted Gao.

“We want to intercept the wrong items or defective items,” he said. “That translates to less back and forth shipping overhead, while also delivering a better customer experience.”

New avenues for investigation

Seamless integration of these solutions across the Amazon fulfillment center network will require refinements to the AI models such as the ability to parse a potential misperception of a defect from an actual defect. For example, a “manufactured on” date might be conflated with an “expiration” date or sneakers that arrive without a shoebox are the wrong item instead of a step to reduce packaging, noted Ke.

Related content
Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

What’s more, there are challenges adapting CV models to the unique nuances of each fulfillment center and region, such as the size and color of the totes used to convey items around fulfillment centers, and the ability to extract data across a multitude of languages.

“There’s a lot of information that’s written in words,” Ke explained. “So how do we make sure that the model is picking up the right language and translating it correctly? That’s another challenge our science team is trying to solve.”

As the team has gone down this road, they’ve amassed data that shows the defects sometimes are the result of what happens outside of Amazon’s fulfillment centers.

“It could have been a carrier issue,” noted Akashi. “When customers say, ‘Hey, it came damaged,’ we can look into our outbound images and see that nothing has gone wrong. Then we can go figure out what else is going on.”

The team also plans to make data on defects more easily accessible to selling partners, Akashi added. For example, if Amazon discovered a seller accidentally put stickers with the wrong size on a product, Amazon would communicate the issue to help prevent the error from happening again.

“There’s an opportunity to get this information in front of our selling partners so they have visibility to their own inventory, and they can also have more succinct root causes to why these returns are happening,” she explained. “We’re excited that the data that we’re gathering and the AI models we are creating will benefit our customers and selling partners."

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
Do you want to create intelligent, adaptable robots with global impact? We are seeking an experienced Applied Science Manager to lead a team of talented applied scientists and software engineers developing and deploying advanced manipulation strategies and algorithms. You will drive innovation that enables manipulation in high-contact, high-density, and diverse conditions with the speed and reliability that will delight our customers. Collaborating with cross-functional teams across hardware, software, and science, you will deliver reliable and high-performing solutions that will scale across geographies, applications, and conditions. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a disruptor, prolific innovator, and a reputed problem solver—someone who truly enables robotics to significantly impact the lives of millions of consumers. A day in the life - Prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in people and performance management tasks. - Set a vision for the team and create the technical roadmap that deliver results for customers while thinking big for future applications. - Guide the research, design, deployment, and evaluation of complex motion planning and control algorithms for contact-rich, cluttered, real-world manipulation problems. - Work closely with perception, hardware, and software teams to create integrated robotic solutions that are better than the sum of their parts. - Implement best practices in applied research and software development, managing project timelines, resources, and deliverables effectively. Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization • Provide customer and market feedback to product and engineering teams to help define product direction