Amazon Nova AI Challenge: FAQs

General
What is the Amazon Nova AI Challenge?
The Amazon Nova AI Challenge is a university competition dedicated to accelerating the field of artificial intelligence (AI). It was created to recognize and advance students from around the globe who are shaping the future of artificial intelligence. Student teams are able to work on the latest challenges in the field of AI and build innovative solutions.
How does the Amazon Nova AI Challenge support research?
The Amazon Nova AI Challenge is a testbed for university students to experiment with and advance AI at scale. Participating teams compete to develop innovative and effective solutions to a specific challenge. Teams receive a number of forms of support, including stipends, AWS credits, and consultation and mentoring from the Amazon Nova AI Challenge team.
How do I contact Amazon if I have question about the challenge?
If you can't find an answer to your question, please email: amazon-challenge@amazon.com.
Competition details
What is the goal of the Amazon Nova AI Challenge: Trusted AI?
The goal of the Amazon Nova AI Challenge: Trusted AI is to make AI responsible and safer for all, with a focus this year on preventing AI from assisting with writing malicious code or writing code with security vulnerabilities. The ultimate goal of the competition is to identify ways for large language model (LLM) creators to anticipate and mitigate safety risks and implement appropriate measures to make models secure.
What is in scope for this competition?
The first year of the Amazon Nova AI Challenge focuses on large language model (LLM) coding security with specific focus on two categories: a) malicious code, defined as an event when a model generates responses that contain code in response to requests to assist with malicious security events such as denial of service, malware, and ransomware, and b) vulnerable code generation, defined as an event when a model generates responses containing code with known security vulnerabilities. The challenge will run as a tournament style competition with university teams assuming the role of either a model developer team or red team for the duration of the challenge. Model developer teams will build security features into code-generating models, while red teams will develop automated techniques to test these models. This first iteration of the competition will be limited to Python. Interactions will be chat-based where a red-team system has a multi-turn conversation with each developer teams model. Inputs to a conversation can include both code and text and responses may also contain code, text, or a combination of both.
Why should I participate?
There are multiple benefits of participating in the Amazon Nova AI Challenge: Trusted AI, including:
  1. Dynamic feedback: Teams will get the opportunity to test their systems against best-in-class competitors. Unlike static benchmarks, the challenge evaluations are dynamic and multi-turn and evolve as both sets of teams refine their systems over the course of the competition.
  2. AWS services: Participating teams will receive training, support, and access to the full suite of AWS services, with monthly AWS credits to support the cost of training and execution of their systems.
  3. IP ownership: Teams retain ownership of their work and associated IP, and are encouraged to publish their research after Amazon’s review.
  4. Stipend: Each team chosen for the Amazon Nova AI Challenge: Trusted AI will receive sponsorship in the amount of $250K. Funding is intended to support roughly two full-time students and one month of faculty time.
  5. Cash prizes: For model developer teams, the top ranked team will receive $250K and the second ranked team will receive $100K. Red teams will also receive $250K for the top ranked team and $100K for the second ranked team. All cash prizes will be divided equally among the students on the team.
When is the finals event?
The finals event will be held in June 2025.
Can we use other funding to help us participate in this challenge?
Yes, you may use other funding to support your team, subject to the terms described in the Challenge Rules. External funding must be disclosed to Amazon.
Can we publish our research from participation in the Amazon Nova AI Challenge: Trusted AI?
Yes, in fact publishing research papers as an outcome of your work on the Amazon Nova AI Challenge: Trusted AI is required for all teams participating in the competition, although teams may not publish any Amazon confidential information, as described in the Challenge Rules. The Amazon Nova AI Challenge: Trusted AI requires all teams to submit a technical paper to be included in the challenge proceedings. Your team will not be selected for the finals if your team does not submit a technical paper for inclusion in the proceedings. Papers will be published online at the end of the competition and made publicly available through the Amazon Science website. Teams may also publish research papers in third-party publications and conferences, as long as all papers are provided to Amazon for review and approval at least two weeks before the submission deadline.
How will the tournaments be run?
The Amazon Nova AI Challenge: Trusted AI will consist of a series of tournaments between winter 2024 and summer 2025, where each of the red-team systems will have the opportunity to engage each of the developer teams’ systems in a series of multi-turn conversations. Each team will be matched up against all opposing teams in each tournament. Red-team systems will attempt to solicit help with writing malicious code and code containing security vulnerabilities from developer teams’ models. At the conclusion of each tournament, teams will be ranked based on their performance, and the results will be shared with each team.
How will developer teams be ranked in the tournament?
Model developer teams will win a specific conversation if they do not provide responses containing: 1) assistance with writing malicious code, and/or 2) code with security vulnerabilities. For each match-up, model developer teams will be scored based on the number of conversations they win. A model developer team's tournament ranking will be determined based on their average score across each of the red team systems their team was matched against. To prevent model developer teams from over-indexing on being safe and no longer being helpful (e.g., the model cannot always say, “Sorry I can’t help with that” to get a perfect score), we will also evaluate the utility of the developer teams' models and their final ranking will factor in their score from utility evaluation.
How will red teams be ranked in the tournament?
Red teams will win a specific conversation if they are able to get a developer teams’ system to provide: (1) assistance with writing malicious code, and/or (2) code with security vulnerabilities. For each match-up, red teams will be scored based on the number of conversations they win. A red team’s tournament ranking will be determined based on their average score across each of the developer teams’ models their team was matched against. To incentivize a broad range of approaches rather than repeat of a single successful strategy, we will also evaluate the diversity of successful red team attempts, and a red team’s final ranking will factor in their score from diversity evaluation.
Eligibility
Who can apply to participate?
The Amazon Nova AI Challenge: Trusted AI is open to full-time students (undergraduate or graduate) with some exceptions (see Challenge Rules). Proof of enrollment will be required to participate.
Can I participate if I don’t attend a university?
No. The Amazon Nova AI Challenge: Trusted AI is open only to full-time enrolled university students.
Do I need to be enrolled in a university program throughout my participation in the competition?
All participating team members must remain full-time students in good standing at their university while participating in the competition.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province, or jurisdiction of residence at the time of entry.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors, and contractors are not eligible to participate. See Challenge Rules for additional restrictions.
Teams
How many teams will be selected to participate?
All applications will be reviewed and evaluated by Amazon. Up to ten teams will be selected to compete in a tournament style competition.
How many team members can our team have?
There is no minimum or maximum number of team members. All team members must be enrolled in their university throughout their participation. All teams will receive a $250,000 grant regardless of how many members are on their team.
Can students from different universities be on the same team?
No. Teams must be composed of students attending the same university.
Can one university have more than one team?
Yes, universities may have more than one team. Multiple teams cannot have the same faculty advisor.
Can I participate on two separate teams?
No. You can only be a part of one team for the duration of the competition.
Can undergraduate and graduate students work together?
Yes, teams may be composed of undergraduate and graduate students.
Do I need a faculty advisor?
All teams must nominate a faculty advisor and include the faculty advisor’s consent in the applications.
Can there by more than one faculty advisor in a team?
Yes, there may be up to two faculty advisors per team.
What is the role of the faculty advisor?
Faculty advisors will advise students on technical direction and be a sounding board for new ideas, similar to a graduate school advisor. They will also act as the official representative from the university for this competition.
Can we add or remove team members during the competition?
During the competition, there will be a period of time during which faculty advisors may request to remove or add members to the team, subject to approval by Amazon. See Challenge Rules for details.
Can we discuss our work with faculty or students who aren’t on our team?
Only team members may work on their systems. However, the faculty advisor and other students and faculty members at your university may provide support and advice to your team and may co-author technical publications and research papers.
Application process
How do we apply to participate in the challenge?
Begin the application via YouNoodle, which will be provided during the application period.
What do we need to apply?
Once you have selected your team members, team leader, and faculty sponsor, you are ready to begin the application process. You may apply to both roles and if you do so Amazon will assign one of the two roles to your team.
Do all team members have to apply?
Each team must have a team lead, who should submit only one application on behalf of the whole team. Your application must include all of your team members’ information.
Is there an application fee?
There is no application fee.
How will teams be selected to participate?
All applications will be reviewed by a panel of experts within Amazon. Teams will be selected based on the following criteria: (1) the potential scientific contribution to the field; (2) the technical merit of the approach; (3) the novelty of the idea; and (4) an assessment of the team’s ability to execute against their plan. Please be sure to provide enough detail in your application to enable evaluation of your proposal.
Grants and prizes
Do we get a grant or other support to participate in the Amazon Nova AI Challenge: Trusted AI ?
Up to ten teams will be sponsored to participate in the competition. Each sponsored team’s university will receive a $250,000 research grant to help fund the team’s participation. In addition each participating team will receive AWS credits to support the development of their system, and support from the Amazon Nova AI Challenge team.
How can the grant be spent?
The grant is intended to support two full-time students for the duration of the competition and one month of the faculty advisor’s salary. No more than 35% of the research grant may be allocated to administrative fees. Teams will be expected to book their flight and hotels and cover the travel cost to bootcamp using the awarded stipend. If your team would like to use the funds in another manner, your faculty advisor must receive approval from Amazon before doing so.
What are the prizes for winning the competition?
From the evaluation at the finals event, the two top ranked model developer teams and top two ranked red teams will receive awards. The two teams placed 1st in each role (i.e., red team and developer team) will receive $250,000 each, and the two teams in 2nd place will receive $100,000 each.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!