A Riemannian gossip approach to decentralized matrix completion

By Bamdev Mishra, Hiroyuki Kasai, Hiroyuki Sato
2016
Download Copy BibTeX
Copy BibTeX
In this paper, we propose novel gossip algorithms for the low-rank decentralized matrix completion problem. The proposed approach is on the Riemannian Grassmann manifold that allows local matrix completion by different agents while achieving asymptotic consensus on the global low-rank factors. The resulting approach is scalable and parallelizable. Our numerical experiments show the good performance of the proposed algorithms on various benchmarks.
Tags

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more