A transformer-based substitute recommendation model incorporating weakly supervised customer behavior data

By Wenting Ye, Derek Yang, Shuai Zhao, Haoyang Fang, Xingjian Shi, Naveen Neppalli
2023
Download Copy BibTeX
Copy BibTeX
The substitute-based recommendation is widely used in E-commerce to provide better alternatives to customers. However, existing re-search typically uses customer behavior signals like co-view and view-but-purchase-another to capture the substitute relationship. Despite its intuitive soundness, such an approach might ignore the functionality and characteristics of products. In this paper, we adapt substitute recommendations into language matching problem. It takes the product title description as model input to consider product functionality. We design a new transformation method to de-noise the signals derived from production data. In addition, we consider multilingual support from the engineering point of view. Our proposed end-to-end transformer-based model achieves both successes from offline and online experiments. The proposed model has been deployed in a large-scale E-commerce website for 11 marketplaces in 6 languages. Our proposed model is demonstrated to increase revenue by 19% based on an online A/B experiment.

Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more