Automate page layout optimization: An offline deep Q-learning approach

2022
Download Copy BibTeX
Copy BibTeX
The modern e-commerce web pages have brought better customer experience and more profitable services by whole page optimization at different granularity, e.g., page layout optimization, item ranking optimization, etc. Generating the proper page layout per customer’s request is one of the vital tasks during the web page rendering process, which can directly impact customers’ shopping experience and their decision-making. In this paper, we formulate the request-rendering interactions as a Markov decision process (MDP) and solve it by deep reinforcement learning (RL). Specifically, we present the design and implementation of applying offline Deep Q-Learning (DQN) to the contextual page layout optimization problem. Through the offline evaluation method, we demonstrate the effectiveness of the proposed framework, i.e., the RL agent has the potential to perform better than the baseline ranker by learning from the offline data set, e.g., the RL agent can improve the average cumulative rewards up to 36.69% comparing to the baseline ranker.





Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more