Direct optimization of F-measure for retrieval-based personal question answering

By Rasool Fakoor, Amanjit Kainth, Siamak Shakeri, Christopher Winestock, Abdel-Rahman Mohamed, Ruhi Sarikaya
2018
Download Copy BibTeX
Copy BibTeX
Recent advances in spoken language technologies and the introduction of many customer facing products, have given rise to a wide customer reliance on smart personal assistants for many of their daily tasks. In this paper, we present a system to reduce users’ cognitive load by extending personal assistants with long-term personal memory where users can store and retrieve by voice, arbitrary pieces of information. The problem is framed as a neural retrieval based question answering system where answers are selected from previously stored user memories. We propose to directly optimize the end-to-end retrieval performance, measured by the F1-score, using reinforcement learning, leading to better performance our experimental test set(s).
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more