Explainable uncertainty attribution for sequential recommendation

By Carles Balsells Rodas, Fan Yang, Zhishen Huang, Yan Gao
2024
Download Copy BibTeX
Copy BibTeX
Sequential recommendation systems suggest products based on users’ historical behaviours. The inherent sparsity of user-item interactions in a vast product space often leads to unreliable recommendations. Recent research addresses this challenge by leveraging auxiliary product relations to mitigate recommendation uncertainty, and quantifying uncertainty in recommendation scores to modify the candidates selection. However, such approaches may not be efficient due to the requirement of additional side information or providing suboptimal recommendations. To enhance sequential recommendation performance by leveraging uncertainty information, we introduce Explainable Uncertainty Attribution (ExUA). We employ gradient-based saliency attribution to identify sources of uncertainty stemming from sequential interactions. Experimental findings on Amazon and MovieLens datasets demonstrate ExUA’s effectiveness in identifying interactions that induce uncertainty, resulting in a 6%+ improvement in NDCG@20 scores when the un-certainty information is integrated into a post-hoc training phase.
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more