Generative adversarial networks for annotated data augmentation in data sparse NLU

2020
Download Copy BibTeX
Copy BibTeX
Data sparsity is one of the key challenges associated with model development in natural language understanding (NLU) for conversational agents. The challenge is made more complex by the demand for high quality annotated utterances commonly required for supervised learning, usually resulting in weeks of manual labor and high cost. In this paper, we present our results on boosting NLU model performance through training data augmentation using a sequential generative adversarial network (GAN). We explore data generation in the context of two tasks, the bootstrapping of a new language and the handling of low resource features. For both tasks we explore three sequential GAN architectures, one with a token-level reward function, another with our own implementation of a token-level Monte Carlo rollout reward, and a third with sentence-level reward. We evaluate the performance of these feedback models across several sampling methodologies and compare our results to upsampling the original data to the same scale. We further improve the GAN model performance through the transfer learning of the pre-trained embeddings. Our experiments reveal synthetic data generated using the sequential generative adversarial network provides significant performance boosts across multiple metrics and can be a major benefit to the NLU tasks.

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more