Group masked autoencoder based density estimator for audio anomaly detection

By Ritwik Giri, Fangzhou Cheng, Karim Helwani, Srikanth V. Tenneti, Umut Isik, Arvindh Krishnaswamy
2020
Download Copy BibTeX
Copy BibTeX
In this paper, we address the problem of detecting previously unseen anomalous audio events, when the training dataset itself does not contain any examples of anomalies. While the traditional density estimation techniques, such as Gaussian Mixture Model (GMM) showed promise in past for the problem at hand, recent advances in neural density estimation techniques, have made them suitable for anomaly detection task. In this work, we develop a novel neural density estimation technique based on the Group-Masked Autoencoder, that estimates the density of an audio time series by taking into account the intra-frame statistics of the signal. Our proposed approach has been validated using the DCASE 2020 challenge dataset (Task 2 - Unsupervised Detection of Anomalous Sounds for Machine Condition Monitoring). We demonstrate the effectiveness of our approach by comparing against the baseline autoencoder model, and also against recently proposed Interpolating Deep Neural Network (IDNN) model.
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more