Herring: Rethinking the parameter server at scale for the cloud

2020
Download Copy BibTeX
Copy BibTeX
Training large deep neural networks is time consuming and may take days or even weeks to complete. Although parameter-server-based approaches were initially popular in distributed training, scalability issues led the field to move towards all-reduce-based approaches. Recent developments in cloud networking technologies, however, such as the Elastic Fabric Adapter (EFA) and Scalable Reliable Datagram (SRD), motivate a re-thinking of the parameter-server approach to address its fundamental inefficiencies. To this end, we introduce a novel communication library, Herring, which is designed to alleviate the performance bottlenecks in parameter-server-based training. We show that gradient reduction with Herring is twice as fast as all-reduce-based methods. We further demonstrate that training deep learning models like BERTlarge using Herring outperforms all-reduce-based training, achieving 85% scaling efficiency on large clusters with up to 2048 NVIDIA V100 GPUs without accuracy drop.
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more