Hierarchical conditional semi-paired image-to-image translation for multi-task image defect correction on shopping websites

2023
Download Copy BibTeX
Copy BibTeX
On shopping websites, product images of low quality negatively affect customer experience. Although there are plenty of work in detecting images with different defects, few efforts have been dedicated to correct those defects at scale. A major challenge is that there are thousands of product types and each has specific defects, therefore building defect specific models is unscalable. In this paper, we propose a unified Image-to-Image (I2I) translation model to correct multiple defects across different product types. Our model leverages an attention mechanism which hierarchically incorporates high-level defect groups and specific defect types to guide the network to focus on defect-related image regions. Evaluated on eight public datasets, our model reduces the Frechet Inception Distance (FID) by 24.6% in average compared with MoNCE, the state-of-the-art I2I method. Another practical challenge on shopping websites is the lack of high quality paired images. We extend our model to be semi-paired by leveraging both paired and unpaired data. Tested on a shopping website dataset to correct three image defects, our model reduces (FID) by 63.2% in average compared with WS-I2I, the state-of-the art semi-paired I2I method.
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more