Hierarchical query classification in e-commerce search

2024
Download Copy BibTeX
Copy BibTeX
E-commerce platforms typically store and structure product information and search data in a hierarchy. Efficiently categorizing user search queries into a similar hierarchical structure is paramount in enhancing user experience on e-commerce platforms as well as news curation and academic research. The significance of this task is amplified when dealing with sensitive query categorization or critical information dissemination, where inaccuracies can lead to considerable negative impacts. The inherent complexity of hierarchical query classification is compounded by two primary challenges: (1) the pronounced class imbalance that skews towards dominant categories, and (2) the inherent brevity and ambiguity of search queries that hinder accurate classification.

To address these challenges, we introduce a novel framework that leverages hierarchical information through (i) enhanced representation learning that utilizes the contrastive loss to discern fine-grained instance relationships within the hierarchy, called “instance hierarchy”, and (ii) a nuanced hierarchical classification loss that attends to the intrinsic label taxonomy, named “label hierarchy”. Additionally, based on our observation that certain unlabeled queries share typographical similarities with labeled queries, we propose a neighborhood-aware sampling technique to intelligently select these unlabeled queries to boost the classification performance. Extensive experiments demonstrate that our proposed method is better than state-of-the-art (SOTA) on the proprietary Amazon dataset, and comparable to SOTA on the public datasets of Web of Science and RCV1-V2. These results underscore the efficacy of our proposed solution, and pave the path toward the next generation of hierarchy-aware query classification systems.

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more