Learning a neural diff for speech models

2021
Download Copy BibTeX
Copy BibTeX
As more speech processing applications execute locally on edge devices, a set of resource constraints must be considered. In this work we address one of these constraints, namely overthe-network data budgets for transferring models from server to device. We present neural update approaches for release of subsequent speech model generations abiding by a data budget. We detail two architecture-agnostic methods which learn compact representations for transmission to devices. We experimentally validate our techniques with results on two tasks (automatic speech recognition and spoken language understanding) on open source data sets by demonstrating when applied in succession, our budgeted updates outperform comparable model compression baselines by significant margins.
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more