On constant-time QC-MDPC decoders with negligible failure rate

By Shay Gueron, Nir Drucker, Dusan Kostic
2020
Download Copy BibTeX
Copy BibTeX
The QC-MDPC code-based KEM Bit Flipping Key Encapsulation (BIKE) is one of the Round-2 candidates of the NIST PQC standardization project. It has a variant that is proved to be IND-CCA secure. The proof models the KEM with some black-box ("ideal") primitives. Specifically, the decapsulation invokes an ideal primitive called "decoder", required to deliver its output with a negligible Decoding Failure Rate (DFR). The concrete instantiation of BIKE substitutes this ideal primitive with a new decoding algorithm called "Backflip", that is shown to have the required negligible DFR. However, it runs in a variable number of steps and this number depends on the input and on the key. This paper proposes a decoder that has a negligible DFR and also runs in a fixed (and small) number of steps. We propose that the instantiation of BIKE uses this decoder with our recommended parameters. We study the decoder's DFR as a function of the scheme's parameters to obtain a favorable balance between the communication bandwidth and the number of steps that the decoder runs. In addition, we build a constant-time software implementation of the proposed instantiation, and show that its performance characteristics are quite close to the IND-CPA variant. Finally, we discuss a subtle gap that needs to be resolved for every INDCCA secure KEM (BIKE included) where the decapsulation has nonzero failure probability: the difference between average DFR and "worst-case" failure probability per key and ciphertext.

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more