Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models

By Dustin Axman, Reda Yacouby
2020
Download Copy BibTeX
Copy BibTeX
In pursuit of the perfect supervised NLP classifier, razor thin margins and low-resource test-sets can make modeling decisions difficult. Popular metrics such as Accuracy, Precision, and Recall are often insufficient as they fail to give a complete picture of the model’s behavior. We present a probabilistic extension of Precision, Recall, and F1 score, which we refer to as confidence-Precision (cPrecision), confidence-Recall (cRecall), and confidence-F1 (cF1), respectively. The proposed metrics address some of the challenges faced when evaluating large-scale NLP systems, specifically when the model’s confidence score assignments have an impact on the system’s behavior. We describe four key benefits of our proposed metrics as compared to their threshold-based counterparts. Two of these benefits, which we refer to as robustness to missing values and sensitivity to model confidence score assignments are self-evident from the metrics’ definitions; the remaining benefits, generalization, and functional consistency are demonstrated empirically.
Research areas

Latest news

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainableRead more