Pushing the limits of all-atom geometric graph neural networks: Pre-training, scaling and zeroshot transfer

2024
Download Copy BibTeX
Copy BibTeX
The ability to construct transferable descriptors for molecular and biological systems has broad applications in drug discovery, molecular dynamics, and protein analysis. Geometric graph neural networks (Geom-GNNs) utilizing all-atom information have revolutionized atomistic simulations by enabling the prediction of interatomic potentials and molecular properties. Despite these advances, the application of all-atom Geom-GNNs in protein modeling remains limited due to computational constraints. In this work, we first demonstrate the potential of pre-trained Geom-GNNs as zero-shot transfer learners, effectively modeling protein systems with all-atom granularity. Through extensive experimentation to evaluate their expressive power, we characterize the scaling behaviors of Geom-GNNs across selfsupervised, supervised, and unsupervised setups. Interestingly, we find that Geom-GNNs deviate from conventional power-law scaling observed in other domains, with no predictable scaling principles for molecular representation learning. Furthermore, we show how pretrained graph embeddings can be directly used for analysis and synergize with other architectures to enhance expressive power for protein modeling.
Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more