Scalable timing-aware network design via lagrangian decomposition

By Cristiana Lara, Jochen Koenemann, Yisu Nie, Cid de Souza
2023
Download Copy BibTeX
Copy BibTeX
This paper addresses instances of the temporal fixed-charge multi-commodity flow (tfMCF) problem that arise in a very large scale dynamic transportation application. We model the tfMCF as a discrete-time Resource Task Network (RTN) with cyclic schedule, and formulate it as a mixed-integer program. These problems are notoriously hard to solve due to their time-expanded nature, and their size renders their direct solution difficult. We exploit synergies between flows of certain commodities in the formulation to devise model condensation techniques that reduce the number of variables and constraints by a factor of 25%–50%. We propose a solution algorithm that includes balanced graph partitioning, Lagrangian decomposition and a linear programming filtering heuristic. Computational results show that the proposed algorithm allows the solution of previously intractable instances, and the primal solution obtained by the heuristic step is within 2% duality gap of the linear relaxation of the original problem.

Latest news

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainableRead more