SIR beam selector for Amazon Echo devices audio front-end

By Xianxian Zhang, Trausti Kristjansson, Philip Hilmes
2019
Download Copy BibTeX
Copy BibTeX
The Audio Front-End (AFE) is a key component in mitigating acoustic environmental challenges for far-field automatic speech recognition (ASR) on Amazon Echo family of products. A critical component of the AFE is the Beam Selector, which identifies which beam points to the target user. In this paper, we proposed a new SIR beam selector that utilizes subband-based signal-to-interference ratios to learn the locations of the audio sources and therefore further improve the beam selection accuracy for multi-microphone based AFE system. We analyzed the performance of a Signal to Interference Ratio (SIR) beam selector with a comparison to classic beam selector using the datasets collected under various conditions. This method is evaluated and shown to simultaneously decrease word-error-rate (WER) for speech recognition by up to 46.20% and improve barge-in performance via FRR by up to 39.18%.
Research areas

Latest news

US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-Read more