Speech disfluencies occur at higher perplexities

By Priyanka Sen
2020
Download Copy BibTeX
Copy BibTeX
Speech disfluencies have been hypothesized to occur before words that are less predictable and therefore more cognitively demanding. In this paper, we revisit this hypothesis by using OpenAI’s GPT-2 to calculate predictability of words as language model perplexity. Using the Switchboard corpus, we find that 51% of disfluencies occur at the highest, second highest, or within one token of the highest perplexity, and this distribution is not random. We also show that disfluencies precede words with significantly higher perplexity than fluent contexts. Based on our results, we offer new evidence that disfluencies are more likely to occur before less predictable words.

Research areas

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more