The impact of data-heavy, post-quantum TLS 1.3 on the time-to-last-byte of real-world connections

2024
Download Copy BibTeX
Copy BibTeX
It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s postquantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3 connections which carry sizable amounts of data. Intuitively, the introduction of an extra 10KB of ML-KEM and ML-DSA exchanges in the connection negotiation will inflate the connection establishment time proportionally more than it will increase the total connection time of a Web connection carrying 200KB of data. In this work, we quantify the impact of ML-KEM and ML-DSA on typical TLS 1.3 connections which transfer a few hundreds of KB from the server to the client. We study the slowdown in the time-to-last-byte of postquantum connections under normal network conditions and in more unstable environments with high packet delay variability and loss probabilities. We show that the impact of ML-KEM and ML-DSA on the TLS 1.3 time-to-last-byte under stable network conditions is lower than the impact on the time-to-first-byte and diminishes as the transferred data increases. The time-to-last-byte increase stays below 5% for high-bandwidth, stable networks. It goes from 32% increase of the time-to-first-byte to under 15% increase of the time-to-last-byte when transferring 50KiB of data or more under low-bandwidth, stable network conditions. Even when congestion control affects connection establishment, the additional slowdown drops below 10% as the connection data increases to 200KiB. We also show that connections under lossy or volatile network conditions could see higher impact from post-quantum handshakes, but these connections’ time-to-lastbyte increase still drops as the transferred data increases. Finally, we show that such connections are already significantly slow and volatile regardless of the TLS handshake.

Latest news

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainableRead more