What matters for shoppers: Investigating key attributes for online product comparison

2022
Download Copy BibTeX
Copy BibTeX
Before making high-consideration purchase decisions, shoppers generally need to identify and evaluate products’ key differentiating features or attributes. Many customers, however, lack the knowledge required to do so for all product domains. In this work, we investigate and analyze alternatives for identifying important product attributes, which customers can then use to compare candidate products. We propose an unsupervised attribute-ranking approach ReBARC, that combines both objective data from structured product catalogs, and subjective information from unstructured customer reviews, to suggest to the shopper the most important attributes to consider. Our detailed analysis of product attribute importance across various domains on a shopping website shows that ReBARC significantly outperforms prior efforts judged by both automated and human evaluation metrics. We also analyze the correlation and overlap between key product attributes detected by ReBARC, and those visible to customers during online product search.

Latest news

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more