ConversationalAI.svg
Research Area

Conversational AI

Building software and systems that help people communicate with computers naturally, as if communicating with family and friends.

Publications

View all View all
  • Abdalghani Abujabal, Xiaolu Lu, Soumajit Pramanik, Rishiraj Saha Roy, Gerhard Weikum, Yafang Wang
    SIGIR 2019
    2019
    Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) may yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex
  • Diego Marcheggiani, Roi Blanco, Lluís Marquez, Stefanos Angelidis, Lea Frerman
    EMNLP 2019 Workshop on Machine Reading for Question Answering
    2019
    We present a system for answering questions based on the full text of books (BookQA), which first selects book passages given a question at hand, and then uses a memory network to reason and predict an answer. To improve generalization, we pretrain our memory network using artificial questions generated from book sentences. We experiment with the recently published NarrativeQA corpus, on the subset of Who
  • Julian Salazar, Toan Q. Nguyen
    IWSLT 2019
    2019
    We evaluate three simple, normalization-centric changes to improve Transformer training. First, we show that pre-norm residual connections (PRENORM) and smaller initializations enable warmup-free, validation-based training with large learning rates. Second, we propose `2 normalization with a single scale parameter (SCALENORM) for faster training and better performance. Finally, we reaffirm the effectiveness
  • Abdalghani Abujabal, Philipp Christmann, Rishiraj Saha Roy, Jyotsna Singh, Gerhard Weikum
    CIKM 2019
    2019
    Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user’s inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop
  • Interspeech 2019
    2019
    This paper proposes a simple phone mapping approach to multi-dialect acoustic modeling. In contrast to the widely used shared hidden layer (SHL) training approach (hidden layers are shared across dialects whereas output layers are kept separate), phone mapping simplifies model training and maintenance by allowing all the network parameters to be shared; it also simplifies online adaptation via HMM-based

Related content

  • Behnam Hedayatnia
    March 05, 2019
    The 2018 Alexa Prize featured eight student teams from four countries, each of which adopted distinctive approaches to some of the central technical questions in conversational AI. We survey those approaches in a paper we released late last year, and the teams themselves go into even greater detail in the papers they submitted to the latest Alexa Prize Proceedings. Here, we touch on just a few of the teams’ innovations.
  • Anushree Venkatesh
    February 27, 2019
    To ensure that Alexa Prize contestants can concentrate on dialogue systems — the core technology of socialbots — Amazon scientists and engineers built a set of machine learning modules that handle fundamental conversational tasks and a development environment that lets contestants easily mix and match existing modules with those of their own design.
  • January 31, 2019
    This Sunday's Super Bowl between the New England Patriots and the Los Angeles Rams is expected to draw more than 100 million viewers, some of whom will have Alexa-enabled devices within range of their TV speakers. When Amazon's new Alexa ad airs, and Forest Whitaker asks his Alexa-enabled electric toothbrush to play his podcast, how will we prevent viewers’ devices from mistakenly waking up?
  • January 30, 2019
    Many of today’s most popular AI systems are, at their core, classifiers. They classify inputs into different categories: this image is a picture of a dog, not a cat; this audio signal is an instance of the word “Boston”, not the word “Seattle”; this sentence is a request to play a video, not a song. But what happens if you need to add a new class to your classifier — if, say, someone releases a new type of automated household appliance that your smart-home system needs to be able to control?
  • January 24, 2019
    Machine learning systems often act on “features” extracted from input data. In a natural-language-understanding system, for instance, the features might include words’ parts of speech, as assessed by an automatic syntactic parser, or whether a sentence is in the active or passive voice.
  • Anuj Goyal
    January 22, 2019
    Developing a new natural-language-understanding system usually requires training it on thousands of sample utterances, which can be costly and time-consuming to collect and annotate. That’s particularly burdensome for small developers, like many who have contributed to the library of more than 70,000 third-party skills now available for Alexa.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more