-
ACL 2019 Workshop on NLP for Conversational AI2019Tracking the state of the conversation is a central component in task-oriented spoken dialogue systems. One such approach for tracking the dialogue state is slot carryover, where a model makes a binary decision if a slot from the context is relevant to the current turn. Previous work on the slot carryover task used models that made independent decisions for each slot. A close analysis of the results show
-
ICASSP 20192019For real-world speech recognition applications, noise robustness is still a challenge. In this work, we adopt the teacher-student (T/S) learning technique using a parallel clean and noisy corpus for improving automatic speech recognition (ASR) performance under multimedia noise. On top of that, we apply a logits selection method which only preserves the k highest values to prevent wrong emphasis of knowledge
-
ASRU 20192019Expanding new functionalities efficiently is an ongoing challenge for single-turn task-oriented dialogue systems. In this work, we explore functionality-specific semi-supervised learning via self-training. We consider methods that augment training data automatically from unlabeled data sets in a functionality-targeted manner. In addition, we examine multiple techniques for efficient selection of augmented
-
WASPAA 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics2019We propose a novel application of an attention mechanism in neural speech enhancement, by presenting a U-Net architecture with attention mechanism, which processes the raw waveform directly, and is trained end-to-end. We find that the inclusion of the attention mechanism significantly improves the performance of the model in terms of the objective speech quality metrics, and outperforms all other published
-
MT Summit 20192019Although automatic classification of machine translation errors still cannot provide the same detailed granularity as manual error classification, it is an important task which enables estimation of translation errors and better understanding of the analyzed MT system, in a short time and on a large scale. State-of-the-art methods use hard decisions to assign single error labels to each word. This work
Related content
-
April 11, 2019Multiband dynamics processing, which separately modifies volume in different frequency bands of an audio signal, is known to improve listeners’ audio experiences. But in the context of voice-controlled systems like the Amazon Echo family of products, it can also improve automatic speech recognition by making echo cancellation easier.
-
April 08, 2019Transfer learning is the technique of adapting a machine learning model trained on abundant data to a new context in which training data is sparse. On the Alexa team, we’ve explored transfer learning as a way to bootstrap new functions and to add new classification categories to existing machine learning systems.
-
April 04, 2019Customer interactions with Alexa are constantly growing more complex, and on the Alexa science team, we strive to stay ahead of the curve by continuously improving Alexa’s speech recognition system. Increasingly, keeping pace with Alexa’s expanding capabilities will require automating the learning process, through techniques such as semi-supervised learning, which leverages a small amount of annotated data to extract information from a much larger store of unannotated data.
-
April 01, 2019The idea of using arrays of microphones to improve automatic speech recognition (ASR) is decades old. The acoustic signal generated by a sound source reaches multiple microphones with different time delays. This information can be used to create virtual directivity, emphasizing a sound arriving from a direction of interest and diminishing signals coming from other directions. In voice recognition, one of the more popular methods for doing this is known as “beamforming”.
-
Animation by Nick LittleMarch 28, 2019Audio watermarking is the process of adding a distinctive sound pattern — undetectable to the human ear — to an audio signal to make it identifiable to a computer. It’s one of the ways that video sites recognize copyrighted recordings that have been posted illegally. To identify a watermark, a computer usually converts a digital file into an audio signal, which it processes internally.
-
March 21, 2019Sentiment analysis is the attempt, computationally, to determine from someone’s words how he or she feels about something. It has a host of applications, in market research, media analysis, customer service, and product recommendation, among other things. Sentiment classifiers are typically machine learning systems, and any given application of sentiment analysis may suffer from a lack of annotated data for training purposes.