-
Topic knowledge based controlled generation for long documents using retrieval-based language modelsFSDM 20232023Current LLM summarization systems Produce broad overviews which are disconnected from people specific interests and expectations. Basically, people preferences (topics) can be expressed by a collection of semantic keywords. Previous work exploit these keywords as extra input to generate summary. That requires additional human annotations. To tackle these constraints, we propose a novel framework, Topic
-
CIKM 2023 Workshop Personalized Generative AI2023Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language process- ing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model’s output, a straightforward approach is to incorporate past user data into
-
NeurIPS 2023 Workshop on SyntheticData4ML2023We present CALICO, a method to fine-tune Large Language Models (LLMs) to localize conversational agent training data from one language to another. For slots (named entities), CALICO supports three operations: verbatim copy, literal translation, and localization, i.e. generating slot values more appropriate in the target language, such as city and airport names located in countries where the language is
-
NeurIPS 2023 Workshop on SyntheticData4ML2023The emergence of Large Language Models (LLMs) with capabilities like In-Context Learning (ICL) has ushered in new possibilities for data generation across various domains while minimizing the need for extensive data collection and modeling techniques. Researchers have explored ways to use this generated synthetic data to optimize smaller student models for reduced deployment costs and lower latency in downstream
-
EMNLP 20232023A particularly successful class of approaches for few-shot learning combines language models with prompts — handcrafted task descriptions that complement data samples. However, designing prompts by hand for each task commonly requires domain knowledge and substantial guesswork. We observe, in the context of classification tasks, that instruction-finetuned language models are remarkably robust towards some
Related content
-
Animation by O’Reilly Science ArtJune 06, 2019New approach to reference resolution rewrites queries to clarify ambiguous references.
-
June 05, 2019Today, customer exchanges with Alexa are generally either one-shot requests, like “Alexa, what’s the weather?”, or interactions that require multiple requests to complete more complex tasks.
-
May 21, 2019A person’s tone of voice can tell you a lot about how they’re feeling. Not surprisingly, emotion recognition is an increasingly popular conversational-AI research topic.
-
May 16, 2019Text normalization is an important process in conversational AI. If an Alexa customer says, “book me a table at 5:00 p.m.”, the automatic speech recognizer will transcribe the time as “five p m”. Before a skill can handle this request, “five p m” will need to be converted to “5:00PM”. Once Alexa has processed the request, it needs to synthesize the response — say, “Is 6:30 p.m. okay?” Here, 6:30PM will be converted to “six thirty p m” for the text-to-speech synthesizer. We call the process of converting “5:00PM” to “five p m” text normalization and its counterpart — converting “five p m” to “5:00PM” — inverse text normalization.
-
May 13, 2019Recently, we published a paper showing that training a neural network to do language processing in English, then retraining it in German, drastically reduces the amount of German-language training data required to achieve a given level of performance.
-
May 03, 2019Using cosine similarity rather than dot product to compare vectors helps prevent "catastrophic forgetting".