-
Topic knowledge based controlled generation for long documents using retrieval-based language modelsFSDM 20232023Current LLM summarization systems Produce broad overviews which are disconnected from people specific interests and expectations. Basically, people preferences (topics) can be expressed by a collection of semantic keywords. Previous work exploit these keywords as extra input to generate summary. That requires additional human annotations. To tackle these constraints, we propose a novel framework, Topic
-
CIKM 2023 Workshop Personalized Generative AI2023Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language process- ing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model’s output, a straightforward approach is to incorporate past user data into
-
NeurIPS 2023 Workshop on SyntheticData4ML2023We present CALICO, a method to fine-tune Large Language Models (LLMs) to localize conversational agent training data from one language to another. For slots (named entities), CALICO supports three operations: verbatim copy, literal translation, and localization, i.e. generating slot values more appropriate in the target language, such as city and airport names located in countries where the language is
-
NeurIPS 2023 Workshop on SyntheticData4ML2023The emergence of Large Language Models (LLMs) with capabilities like In-Context Learning (ICL) has ushered in new possibilities for data generation across various domains while minimizing the need for extensive data collection and modeling techniques. Researchers have explored ways to use this generated synthetic data to optimize smaller student models for reduced deployment costs and lower latency in downstream
-
EMNLP 20232023A particularly successful class of approaches for few-shot learning combines language models with prompts — handcrafted task descriptions that complement data samples. However, designing prompts by hand for each task commonly requires domain knowledge and substantial guesswork. We observe, in the context of classification tasks, that instruction-finetuned language models are remarkably robust towards some
Related content
-
May 02, 2019Traditionally, Alexa has interpreted customer requests according to their intents and slots. If you say, “Alexa, play ‘What’s Going On?’ by Marvin Gaye,” the intent should be PlayMusic, and “‘What’s Going On?’” and “Marvin Gaye” should fill the slots SongName and ArtistName.
-
April 25, 2019When a customer asks Alexa to play “Hey Jude”, and Alexa responds, “Playing 'Hey Jude' by the Beatles,” that response is generated by a text-to-speech (TTS) system, which converts textual inputs into synthetic-speech outputs...
-
April 22, 2019One of the ways that we’re always trying to improve Alexa’s performance is by teaching her to ignore speech that isn’t intended for her. At this year’s International Conference on Acoustics, Speech, and Signal Processing, my colleagues and I will present a new technique for doing this, which could complement the techniques that Alexa already uses.
-
April 18, 2019Last year, Amazon announced the beta release of Alexa Guard, a new service that lets customers who are leaving the house instruct their Echo devices to listen for glass breaking or smoke and carbon dioxide alarms going off. At this year’s International Conference on Acoustics, Speech, and Signal Processing, our team is presenting several papers on sound detection. I wrote about one of them a few weeks ago, a new method for doing machine learning with unbalanced data sets.
-
April 11, 2019Multiband dynamics processing, which separately modifies volume in different frequency bands of an audio signal, is known to improve listeners’ audio experiences. But in the context of voice-controlled systems like the Amazon Echo family of products, it can also improve automatic speech recognition by making echo cancellation easier.
-
April 08, 2019Transfer learning is the technique of adapting a machine learning model trained on abundant data to a new context in which training data is sparse. On the Alexa team, we’ve explored transfer learning as a way to bootstrap new functions and to add new classification categories to existing machine learning systems.