2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

Recipient

University

Research title

Vikram Adve

University of Illinois Urbana-Champaign

Extending the LLVM compiler infrastructure for tensor architectures

Pulkit Agrawal

Massachusetts Institute of Technology

A framework for multi-step planning for manipulating rigid objects

Ron Alterovitz

University of North Carolina at Chapel Hill

Cloud-based motion planning: an enabling technology for next-generation autonomous robots

Jimmy Ba

University of Toronto

Model-based reinforcement learning with causal world models

Saurabh Bagchi

Purdue University—West Lafayette

Content and contention-aware approximate streaming video analytics for edge devices

David Baker Effendi

Stellenbosch University

Dataflow analysis using code property graphs, graph databases and synchronized pushdown systems

Sivaraman Balakrishnan

Carnegie Mellon University

Foundations of robust machine learning: from principled approaches to practice

Elias Bareinboim

Columbia University

Off-policy evaluation through causal modeling

Clark Barrett

Stanford University

Model-based testing of SMT solvers

Lars Birkedal

Aarhus University

Modular reasoning about distributed systems: higher-order distributed separation logic

David Blei

Columbia University

New directions in observational causal inference

Eric Bodden

Paderborn University

HybridCG — dynamically-enriched call-Graph generation of Java enterprise applications

Legand Burge

Howard University

Voice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions

James Caverlee

Texas A&M University, College Station

Fairness in recommendation without demographics

Changyou Chen

University at Buffalo

Scaling up human-action analysis systems

Danqi Chen

Princeton University

Building broad-coverage, structured dense knowledge bases for natural language processing tasks

Helen Chen

University of Waterloo

Optimizing pretrained clinical embeddings for automatic COVID-related ICD coding

Yiran Chen

Duke University

Privacy-preserving representation learning on graphs — a mutual information perspective

Margarita Chli

ETH Zurich

Vision-based emergency landing in urban environments using reinforcement learning and deep learning

Kyunghyun Cho

New York University

Independently controllable attributes for controllable neural text generation

Carlo Ciliberto

University College London

Optimal transport for meta-learning

Loris D’Antoni

University of Wisconsin–Madison

Correct-by-construction IAM policies

David Danks

Carnegie Mellon University

An integrated framework for understanding human-AI hybrid decision-making

Suhas Diggavi

University of California, Los Angeles

Compressed private and secure distributed edge learning

Greg Durrett

University of Texas At Austin

Making conditional text generation fair and factual

Sergio Escalera

Universitat de Barcelona and Computer Vision Center

Portable virtual try-on for smart devices

Jan Faigl

Czech Technical University in Prague

Communication maps building in subterranean environments

Pietro Ferrara

Ca’ Foscari University of Venice

IAM access control policies verification and inference

Katerina Fragkiadaki

Carnegie Mellon University

Generalizing manipulation across objects, configurations and views using a visually-grounded library of behaviors

Guillermo Gallego

Technical University of Berlin

Online in-hand object tracking and grasp failure detection with an event-based camera

Grace Gao

Stanford University

Trustworthy autonomous vehicle localization using a joint model-driven and data-driven approach

Stephanie Gil

Harvard University

Enabling the next generation of coordinated robots: scalable real-time decision making

Luca Giuggioli

University of Bristol

Multi-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering

Jorge Goncalves

University of Melbourne

Integrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks

Ananth Grama

Purdue University—West Lafayette

Scaling causal inference to explainable clinical recommendations

Grace Gu

University of California, Berkeley

Surrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices

Ronghui Gu

Columbia University

Microverification of the Linux KVM hypervisor: proving VM confidentiality and integrity

Aarti Gupta

Princeton University

Learning abstract specifications from distributed program implementations

Saurabh Gupta

University of Illinois Urbana-Champaign

Self-supervised discovery of object states and transitions from unlabeled videos

Daniel Harabor

Monash University

Anytime constraint-based multi-agent pathfinding

Hynek Hermansky

Johns Hopkins University

Multistream lifelong federated learning for machine recognition of speech

Bin Hu

University of Illinois Urbana-Champaign

Provably robust adversarial reinforcement learning for sequential decision making in safety-critical environments

Lifu Huang

Virginia Tech

Event-centric temporal and causal knowledge acquisition and generalization for natural language understanding

Dinesh Jayaraman

University of Pennsylvania

Learning modular dynamics models for plug-and-play visual control

Sven Koenig

University of Southern California

Improving planning and plan execution for warehouse automation

Laura Kovacs

TU Wien

FOREST: first-order reasoning for ensuring system security

Arun Kumar

University of California, San Diego

Improving automated feature type inference for AutoML on tabular data

Himabindu Lakkaraju

Harvard University

Towards reliable and robust model explanations

Kevin Leyton-Brown

University of British Columbia

Automated machine learning for tabular datasets using hyperband embedded reinforcement learning

Bo Li

University of Illinois Urbana-Champaign

Machine learning evaluation as a service for robustness, fairness, and privacy utilities

Ke Li

University of Exeter

Many hands make work light: multi-task deep semantic learning for testing web application firewalls

Zhiqiang Lin

Ohio State University

Type-aware recovery of symbol names in binary code: a machine learning based approach

Jeffrey Liu

Massachusetts Institute of Technology

Integrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum

Michael Mahoney

University of California, Berkeley

Systematic methods for efficient inference and training of neural networks

Radu Marculescu

University of Texas

New directions for 3D object detection: distributed inference on edge devices using knowledge distillation

Ruben Martins

Carnegie Mellon University

Improving performance and trust of MaxSAT solvers

Jiri Matas

Czech Technical University in Prague

Training neural networks on non-differentiable losses

Michael Milford

Queensland University of Technology

Complementarity-aware multi-process fusion for long term localization

Heather Miller

Carnegie Mellon University

Directed automated explicit-state model checking for distributed applications

Ndapa Nakashole

University of California, San Diego

Learning representations for voice-based conversational agents for older adults

Shrikanth Narayanan

University of Southern California

Toward inclusive human-AI conversational experiences for children

Lerrel Pinto

New York University

Learning to manipulate deformable objects through robust simulations

Ravi Ramamoorthi

University of California, San Diego

Sparse multi-view object acquisition using learned volumetric representations

Philip Resnik

University of Maryland, College Park

Advanced topic modeling to support the understanding of COVID-19 and its effects

Daniela Rus

Massachusetts Institute of Technology

Learning to plan through imagined self-play for multi-agent system

Supreeth Shashikumar

University of California, San Diego

Privacy preserving continual learning with applications to critical care

Robert Shepherd

Cornell University

Enduring and adaptive robots via electrochemical blood

Cong Shi

University of Michigan, Ann Arbor

Machine learning for personalized assortment optimization

Florian Shkurti

University of Toronto

Generating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators

Abhinav Shrivastava

University of Maryland, College Park

The pursuit of knowledge: discovering and localizing new concepts using dual memory

Roland Siegwart

ETH Zurich

Safe self-calibration of hybrid aerial vehicles

Sameer Singh

University of California, Irvine

Detecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence

Noah Smith

University of Washington - Seattle

Language model customization

Mahdi Soltanolkotabi

University of Southern California

Artificial intelligence for fast and portable medical imaging (with limited training data)

Seung Woo Son

University of Massachusetts Lowell

Reliable and accurate anomaly detection in edge nodes using sparsity profile

Dawn Song

University of California, Berkeley

Knowledge-enhanced cyber threat hunting

Dezhen Song

Texas A&M University, College Station

Optoacoustic material and structure pretouch sensing at robot fingertip

Shuran Song

Columbia University

Dexterity through diversity:learning a generalizable grasping policy for diverse end-effectors

Yizhou Sun

University of California, Los Angeles

Accelerating graph neural network training

Russ Tedrake

Massachusetts Institute of Technology

Intuitive physics for manipulation

James Tompkin

Brown University

Real-time multi-camera fusion for unoccluded VR robot teleoperation

Emina Torlak

University of Washington - Seattle

Automated verification of JIT compilers for BPF

Marynel Vazquez

Yale University

Evaluating social robot navigation via online human-driven simulations

Nisheeth Vishnoi

Yale University

Fair and error-resilient algorithms for AI and ML

Gang Wang

University of Illinois at Urbana–Champaign

Combating concept drift in security applications via proactive data synthesis

Hao Wang

Rutgers University-New Brunswick

Structured domain adaptation with applications to personalization and forecasting

James Wang

Pennsylvania State University

Affective and social interaction between human and intelligent machine

Gloria Washington

Howard University

Towards identification of uncomfortable speech in conversations

Chuan Wu

The University of Hong Kong

Compilation optimization in distributed DNN training: joining OP and tensor fusion/partition

Eugene Wu

Columbia University

Human-in-the-loop data debugging for ML-oriented analytics

Jiajun Wu

Stanford University

Implicit dynamic scene representation learning for robotics

Ming-Ru Wu

Dana-Farber Cancer Institute

From bench to clinic – machine-learning based cancer immunotherapy design

Diyi Yang

Georgia Institute of Technology

Abstractive conversation summarization at scale

Sixian You

Massachusetts Institute of Technology

AI-driven label-free histology for cancer diagnosis

Jingjin Yu

Rutgers University-New Brunswick

Pushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics

Rui Zhang

Pennsylvania State University

Building robust conversational question answering systems over databases of tabular data

Yu Zhang

University of South Florida

Design of an automated advanced air mobility flight planning system (AAFPS)

Yuke Zhu

University of Texas at Austin

Learning implicit shape affordance for grasping and manipulation

Marinka Zitnik

Harvard University

Actionable graph learning for finding cures for emerging diseases

James Zou

Stanford University

How to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.