2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

Recipient

University

Research title

Vikram Adve

University of Illinois Urbana-Champaign

Extending the LLVM compiler infrastructure for tensor architectures

Pulkit Agrawal

Massachusetts Institute of Technology

A framework for multi-step planning for manipulating rigid objects

Ron Alterovitz

University of North Carolina at Chapel Hill

Cloud-based motion planning: an enabling technology for next-generation autonomous robots

Jimmy Ba

University of Toronto

Model-based reinforcement learning with causal world models

Saurabh Bagchi

Purdue University—West Lafayette

Content and contention-aware approximate streaming video analytics for edge devices

David Baker Effendi

Stellenbosch University

Dataflow analysis using code property graphs, graph databases and synchronized pushdown systems

Sivaraman Balakrishnan

Carnegie Mellon University

Foundations of robust machine learning: from principled approaches to practice

Elias Bareinboim

Columbia University

Off-policy evaluation through causal modeling

Clark Barrett

Stanford University

Model-based testing of SMT solvers

Lars Birkedal

Aarhus University

Modular reasoning about distributed systems: higher-order distributed separation logic

David Blei

Columbia University

New directions in observational causal inference

Eric Bodden

Paderborn University

HybridCG — dynamically-enriched call-Graph generation of Java enterprise applications

Legand Burge

Howard University

Voice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions

James Caverlee

Texas A&M University, College Station

Fairness in recommendation without demographics

Changyou Chen

University at Buffalo

Scaling up human-action analysis systems

Danqi Chen

Princeton University

Building broad-coverage, structured dense knowledge bases for natural language processing tasks

Helen Chen

University of Waterloo

Optimizing pretrained clinical embeddings for automatic COVID-related ICD coding

Yiran Chen

Duke University

Privacy-preserving representation learning on graphs — a mutual information perspective

Margarita Chli

ETH Zurich

Vision-based emergency landing in urban environments using reinforcement learning and deep learning

Kyunghyun Cho

New York University

Independently controllable attributes for controllable neural text generation

Carlo Ciliberto

University College London

Optimal transport for meta-learning

Loris D’Antoni

University of Wisconsin–Madison

Correct-by-construction IAM policies

David Danks

Carnegie Mellon University

An integrated framework for understanding human-AI hybrid decision-making

Suhas Diggavi

University of California, Los Angeles

Compressed private and secure distributed edge learning

Greg Durrett

University of Texas At Austin

Making conditional text generation fair and factual

Sergio Escalera

Universitat de Barcelona and Computer Vision Center

Portable virtual try-on for smart devices

Jan Faigl

Czech Technical University in Prague

Communication maps building in subterranean environments

Pietro Ferrara

Ca’ Foscari University of Venice

IAM access control policies verification and inference

Katerina Fragkiadaki

Carnegie Mellon University

Generalizing manipulation across objects, configurations and views using a visually-grounded library of behaviors

Guillermo Gallego

Technical University of Berlin

Online in-hand object tracking and grasp failure detection with an event-based camera

Grace Gao

Stanford University

Trustworthy autonomous vehicle localization using a joint model-driven and data-driven approach

Stephanie Gil

Harvard University

Enabling the next generation of coordinated robots: scalable real-time decision making

Luca Giuggioli

University of Bristol

Multi-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering

Jorge Goncalves

University of Melbourne

Integrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks

Ananth Grama

Purdue University—West Lafayette

Scaling causal inference to explainable clinical recommendations

Grace Gu

University of California, Berkeley

Surrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices

Ronghui Gu

Columbia University

Microverification of the Linux KVM hypervisor: proving VM confidentiality and integrity

Aarti Gupta

Princeton University

Learning abstract specifications from distributed program implementations

Saurabh Gupta

University of Illinois Urbana-Champaign

Self-supervised discovery of object states and transitions from unlabeled videos

Daniel Harabor

Monash University

Anytime constraint-based multi-agent pathfinding

Hynek Hermansky

Johns Hopkins University

Multistream lifelong federated learning for machine recognition of speech

Bin Hu

University of Illinois Urbana-Champaign

Provably robust adversarial reinforcement learning for sequential decision making in safety-critical environments

Lifu Huang

Virginia Tech

Event-centric temporal and causal knowledge acquisition and generalization for natural language understanding

Dinesh Jayaraman

University of Pennsylvania

Learning modular dynamics models for plug-and-play visual control

Sven Koenig

University of Southern California

Improving planning and plan execution for warehouse automation

Laura Kovacs

TU Wien

FOREST: first-order reasoning for ensuring system security

Arun Kumar

University of California, San Diego

Improving automated feature type inference for AutoML on tabular data

Himabindu Lakkaraju

Harvard University

Towards reliable and robust model explanations

Kevin Leyton-Brown

University of British Columbia

Automated machine learning for tabular datasets using hyperband embedded reinforcement learning

Bo Li

University of Illinois Urbana-Champaign

Machine learning evaluation as a service for robustness, fairness, and privacy utilities

Ke Li

University of Exeter

Many hands make work light: multi-task deep semantic learning for testing web application firewalls

Zhiqiang Lin

Ohio State University

Type-aware recovery of symbol names in binary code: a machine learning based approach

Jeffrey Liu

Massachusetts Institute of Technology

Integrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum

Michael Mahoney

University of California, Berkeley

Systematic methods for efficient inference and training of neural networks

Radu Marculescu

University of Texas

New directions for 3D object detection: distributed inference on edge devices using knowledge distillation

Ruben Martins

Carnegie Mellon University

Improving performance and trust of MaxSAT solvers

Jiri Matas

Czech Technical University in Prague

Training neural networks on non-differentiable losses

Michael Milford

Queensland University of Technology

Complementarity-aware multi-process fusion for long term localization

Heather Miller

Carnegie Mellon University

Directed automated explicit-state model checking for distributed applications

Ndapa Nakashole

University of California, San Diego

Learning representations for voice-based conversational agents for older adults

Shrikanth Narayanan

University of Southern California

Toward inclusive human-AI conversational experiences for children

Lerrel Pinto

New York University

Learning to manipulate deformable objects through robust simulations

Ravi Ramamoorthi

University of California, San Diego

Sparse multi-view object acquisition using learned volumetric representations

Philip Resnik

University of Maryland, College Park

Advanced topic modeling to support the understanding of COVID-19 and its effects

Daniela Rus

Massachusetts Institute of Technology

Learning to plan through imagined self-play for multi-agent system

Supreeth Shashikumar

University of California, San Diego

Privacy preserving continual learning with applications to critical care

Robert Shepherd

Cornell University

Enduring and adaptive robots via electrochemical blood

Cong Shi

University of Michigan, Ann Arbor

Machine learning for personalized assortment optimization

Florian Shkurti

University of Toronto

Generating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators

Abhinav Shrivastava

University of Maryland, College Park

The pursuit of knowledge: discovering and localizing new concepts using dual memory

Roland Siegwart

ETH Zurich

Safe self-calibration of hybrid aerial vehicles

Sameer Singh

University of California, Irvine

Detecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence

Noah Smith

University of Washington - Seattle

Language model customization

Mahdi Soltanolkotabi

University of Southern California

Artificial intelligence for fast and portable medical imaging (with limited training data)

Seung Woo Son

University of Massachusetts Lowell

Reliable and accurate anomaly detection in edge nodes using sparsity profile

Dawn Song

University of California, Berkeley

Knowledge-enhanced cyber threat hunting

Dezhen Song

Texas A&M University, College Station

Optoacoustic material and structure pretouch sensing at robot fingertip

Shuran Song

Columbia University

Dexterity through diversity:learning a generalizable grasping policy for diverse end-effectors

Yizhou Sun

University of California, Los Angeles

Accelerating graph neural network training

Russ Tedrake

Massachusetts Institute of Technology

Intuitive physics for manipulation

James Tompkin

Brown University

Real-time multi-camera fusion for unoccluded VR robot teleoperation

Emina Torlak

University of Washington - Seattle

Automated verification of JIT compilers for BPF

Marynel Vazquez

Yale University

Evaluating social robot navigation via online human-driven simulations

Nisheeth Vishnoi

Yale University

Fair and error-resilient algorithms for AI and ML

Gang Wang

University of Illinois at Urbana–Champaign

Combating concept drift in security applications via proactive data synthesis

Hao Wang

Rutgers University-New Brunswick

Structured domain adaptation with applications to personalization and forecasting

James Wang

Pennsylvania State University

Affective and social interaction between human and intelligent machine

Gloria Washington

Howard University

Towards identification of uncomfortable speech in conversations

Chuan Wu

The University of Hong Kong

Compilation optimization in distributed DNN training: joining OP and tensor fusion/partition

Eugene Wu

Columbia University

Human-in-the-loop data debugging for ML-oriented analytics

Jiajun Wu

Stanford University

Implicit dynamic scene representation learning for robotics

Ming-Ru Wu

Dana-Farber Cancer Institute

From bench to clinic – machine-learning based cancer immunotherapy design

Diyi Yang

Georgia Institute of Technology

Abstractive conversation summarization at scale

Sixian You

Massachusetts Institute of Technology

AI-driven label-free histology for cancer diagnosis

Jingjin Yu

Rutgers University-New Brunswick

Pushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics

Rui Zhang

Pennsylvania State University

Building robust conversational question answering systems over databases of tabular data

Yu Zhang

University of South Florida

Design of an automated advanced air mobility flight planning system (AAFPS)

Yuke Zhu

University of Texas at Austin

Learning implicit shape affordance for grasping and manipulation

Marinka Zitnik

Harvard University

Actionable graph learning for finding cures for emerging diseases

James Zou

Stanford University

How to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, development, evaluate and deploy innovative and highly scalable models for predictive learning Research and implement novel machine learning and statistical approaches Work closely with software engineering teams to drive real-time model implementations and new feature creations Work closely with business owners and operations staff to optimize various business operations Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Mentor other scientists and engineers in the use of ML techniques
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Control Stack Manager to join our growing software group. You will lead a team of interdisciplinary scientists and software engineers, focused on developing research software and infrastructure to support the development and operation of scalable fault-tolerant quantum computers. You will interface directly with our experimental physics and control hardware teams to develop and drive a vision for the experimental quantum computing software-hardware interface. The ideal candidate will (1) have strong technical breadth across low-level programming, scientific instrumentation, and computer architecture, (2) have excellent communication skills and a proven track record of collaborating with scientists and hardware engineers, and (3) be excited about empowering and growing a team of scientists and software engineers. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. Key job responsibilities - Develop a technical vision for the quantum software-hardware interface in collaboration w/ senior engineers - Collaborate effectively with science and hardware teams to derive software needs and priorities - Own resource allocation and planning activities for your team to meet the needs of (internal) customers - Be comfortable “getting your hands dirty” (i.e. diving deep into architecture, metrics, and implementation) - Regularly provide technical evaluation and feedback to your reports (i.e. via code review, design docs, etc.) - Drive hiring activities for your team — develop growth plans, source candidates, and design interview loops - Coach and empower your employees to become better engineers, scientists, and communicators We are looking for candidates with strong engineering principles, a bias for action, superior problem-solving, and excellent communication skills. Thriving in ambiguity and leading with empathy are essential. As a manager embedded in a broader research science organization, you will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The majority of your time will be spent orchestrating, coaching, and growing the control stack team at the Center for Quantum Computing. This requires collaborating with other science and software teams and working backwards from the needs of our science staff in the context of our larger experimental roadmap. You will translate science needs and priorities into software project proposals and resource allocations. Once project proposals have been accepted, you will support and empower your team to deliver these projects on time while maintaining high standards of engineering excellence. Because many high-level experimental goals have cross-cutting requirements, you’ll need to stay in sync with partner science and software teams. About the team You will be joining the software group within the Center of Quantum Computing. Our team is comprised of scientists and software engineers who are building scalable software that enables quantum computing technologies.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video recommendation systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation Science team owns science solution to power personalized experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. The ideal candidate would have experience in audio processing, natural language understanding and machine learning. Familiarity with machine translation, foundational models, and speech synthesis will be a plus. As an Applied Scientist, you should be a strong communicator, able to describe scientifically rigorous work to business stakeholders of varying levels of technical sophistication. You will closely partner with the solution development teams, and should be intensely curious about how the research is moving the needle for business. Strong inter-personal and mentoring skills to develop applied science talent in the team is another important requirement.