2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

Recipient

University

Research title

Vikram Adve

University of Illinois Urbana-Champaign

Extending the LLVM compiler infrastructure for tensor architectures

Pulkit Agrawal

Massachusetts Institute of Technology

A framework for multi-step planning for manipulating rigid objects

Ron Alterovitz

University of North Carolina at Chapel Hill

Cloud-based motion planning: an enabling technology for next-generation autonomous robots

Jimmy Ba

University of Toronto

Model-based reinforcement learning with causal world models

Saurabh Bagchi

Purdue University—West Lafayette

Content and contention-aware approximate streaming video analytics for edge devices

David Baker Effendi

Stellenbosch University

Dataflow analysis using code property graphs, graph databases and synchronized pushdown systems

Sivaraman Balakrishnan

Carnegie Mellon University

Foundations of robust machine learning: from principled approaches to practice

Elias Bareinboim

Columbia University

Off-policy evaluation through causal modeling

Clark Barrett

Stanford University

Model-based testing of SMT solvers

Lars Birkedal

Aarhus University

Modular reasoning about distributed systems: higher-order distributed separation logic

David Blei

Columbia University

New directions in observational causal inference

Eric Bodden

Paderborn University

HybridCG — dynamically-enriched call-Graph generation of Java enterprise applications

Legand Burge

Howard University

Voice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions

James Caverlee

Texas A&M University, College Station

Fairness in recommendation without demographics

Changyou Chen

University at Buffalo

Scaling up human-action analysis systems

Danqi Chen

Princeton University

Building broad-coverage, structured dense knowledge bases for natural language processing tasks

Helen Chen

University of Waterloo

Optimizing pretrained clinical embeddings for automatic COVID-related ICD coding

Yiran Chen

Duke University

Privacy-preserving representation learning on graphs — a mutual information perspective

Margarita Chli

ETH Zurich

Vision-based emergency landing in urban environments using reinforcement learning and deep learning

Kyunghyun Cho

New York University

Independently controllable attributes for controllable neural text generation

Carlo Ciliberto

University College London

Optimal transport for meta-learning

Loris D’Antoni

University of Wisconsin–Madison

Correct-by-construction IAM policies

David Danks

Carnegie Mellon University

An integrated framework for understanding human-AI hybrid decision-making

Suhas Diggavi

University of California, Los Angeles

Compressed private and secure distributed edge learning

Greg Durrett

University of Texas At Austin

Making conditional text generation fair and factual

Sergio Escalera

Universitat de Barcelona and Computer Vision Center

Portable virtual try-on for smart devices

Jan Faigl

Czech Technical University in Prague

Communication maps building in subterranean environments

Pietro Ferrara

Ca’ Foscari University of Venice

IAM access control policies verification and inference

Katerina Fragkiadaki

Carnegie Mellon University

Generalizing manipulation across objects, configurations and views using a visually-grounded library of behaviors

Guillermo Gallego

Technical University of Berlin

Online in-hand object tracking and grasp failure detection with an event-based camera

Grace Gao

Stanford University

Trustworthy autonomous vehicle localization using a joint model-driven and data-driven approach

Stephanie Gil

Harvard University

Enabling the next generation of coordinated robots: scalable real-time decision making

Luca Giuggioli

University of Bristol

Multi-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering

Jorge Goncalves

University of Melbourne

Integrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks

Ananth Grama

Purdue University—West Lafayette

Scaling causal inference to explainable clinical recommendations

Grace Gu

University of California, Berkeley

Surrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices

Ronghui Gu

Columbia University

Microverification of the Linux KVM hypervisor: proving VM confidentiality and integrity

Aarti Gupta

Princeton University

Learning abstract specifications from distributed program implementations

Saurabh Gupta

University of Illinois Urbana-Champaign

Self-supervised discovery of object states and transitions from unlabeled videos

Daniel Harabor

Monash University

Anytime constraint-based multi-agent pathfinding

Hynek Hermansky

Johns Hopkins University

Multistream lifelong federated learning for machine recognition of speech

Bin Hu

University of Illinois Urbana-Champaign

Provably robust adversarial reinforcement learning for sequential decision making in safety-critical environments

Lifu Huang

Virginia Tech

Event-centric temporal and causal knowledge acquisition and generalization for natural language understanding

Dinesh Jayaraman

University of Pennsylvania

Learning modular dynamics models for plug-and-play visual control

Sven Koenig

University of Southern California

Improving planning and plan execution for warehouse automation

Laura Kovacs

TU Wien

FOREST: first-order reasoning for ensuring system security

Arun Kumar

University of California, San Diego

Improving automated feature type inference for AutoML on tabular data

Himabindu Lakkaraju

Harvard University

Towards reliable and robust model explanations

Kevin Leyton-Brown

University of British Columbia

Automated machine learning for tabular datasets using hyperband embedded reinforcement learning

Bo Li

University of Illinois Urbana-Champaign

Machine learning evaluation as a service for robustness, fairness, and privacy utilities

Ke Li

University of Exeter

Many hands make work light: multi-task deep semantic learning for testing web application firewalls

Zhiqiang Lin

Ohio State University

Type-aware recovery of symbol names in binary code: a machine learning based approach

Jeffrey Liu

Massachusetts Institute of Technology

Integrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum

Michael Mahoney

University of California, Berkeley

Systematic methods for efficient inference and training of neural networks

Radu Marculescu

University of Texas

New directions for 3D object detection: distributed inference on edge devices using knowledge distillation

Ruben Martins

Carnegie Mellon University

Improving performance and trust of MaxSAT solvers

Jiri Matas

Czech Technical University in Prague

Training neural networks on non-differentiable losses

Michael Milford

Queensland University of Technology

Complementarity-aware multi-process fusion for long term localization

Heather Miller

Carnegie Mellon University

Directed automated explicit-state model checking for distributed applications

Ndapa Nakashole

University of California, San Diego

Learning representations for voice-based conversational agents for older adults

Shrikanth Narayanan

University of Southern California

Toward inclusive human-AI conversational experiences for children

Lerrel Pinto

New York University

Learning to manipulate deformable objects through robust simulations

Ravi Ramamoorthi

University of California, San Diego

Sparse multi-view object acquisition using learned volumetric representations

Philip Resnik

University of Maryland, College Park

Advanced topic modeling to support the understanding of COVID-19 and its effects

Daniela Rus

Massachusetts Institute of Technology

Learning to plan through imagined self-play for multi-agent system

Supreeth Shashikumar

University of California, San Diego

Privacy preserving continual learning with applications to critical care

Robert Shepherd

Cornell University

Enduring and adaptive robots via electrochemical blood

Cong Shi

University of Michigan, Ann Arbor

Machine learning for personalized assortment optimization

Florian Shkurti

University of Toronto

Generating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators

Abhinav Shrivastava

University of Maryland, College Park

The pursuit of knowledge: discovering and localizing new concepts using dual memory

Roland Siegwart

ETH Zurich

Safe self-calibration of hybrid aerial vehicles

Sameer Singh

University of California, Irvine

Detecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence

Noah Smith

University of Washington - Seattle

Language model customization

Mahdi Soltanolkotabi

University of Southern California

Artificial intelligence for fast and portable medical imaging (with limited training data)

Seung Woo Son

University of Massachusetts Lowell

Reliable and accurate anomaly detection in edge nodes using sparsity profile

Dawn Song

University of California, Berkeley

Knowledge-enhanced cyber threat hunting

Dezhen Song

Texas A&M University, College Station

Optoacoustic material and structure pretouch sensing at robot fingertip

Shuran Song

Columbia University

Dexterity through diversity:learning a generalizable grasping policy for diverse end-effectors

Yizhou Sun

University of California, Los Angeles

Accelerating graph neural network training

Russ Tedrake

Massachusetts Institute of Technology

Intuitive physics for manipulation

James Tompkin

Brown University

Real-time multi-camera fusion for unoccluded VR robot teleoperation

Emina Torlak

University of Washington - Seattle

Automated verification of JIT compilers for BPF

Marynel Vazquez

Yale University

Evaluating social robot navigation via online human-driven simulations

Nisheeth Vishnoi

Yale University

Fair and error-resilient algorithms for AI and ML

Gang Wang

University of Illinois at Urbana–Champaign

Combating concept drift in security applications via proactive data synthesis

Hao Wang

Rutgers University-New Brunswick

Structured domain adaptation with applications to personalization and forecasting

James Wang

Pennsylvania State University

Affective and social interaction between human and intelligent machine

Gloria Washington

Howard University

Towards identification of uncomfortable speech in conversations

Chuan Wu

The University of Hong Kong

Compilation optimization in distributed DNN training: joining OP and tensor fusion/partition

Eugene Wu

Columbia University

Human-in-the-loop data debugging for ML-oriented analytics

Jiajun Wu

Stanford University

Implicit dynamic scene representation learning for robotics

Ming-Ru Wu

Dana-Farber Cancer Institute

From bench to clinic – machine-learning based cancer immunotherapy design

Diyi Yang

Georgia Institute of Technology

Abstractive conversation summarization at scale

Sixian You

Massachusetts Institute of Technology

AI-driven label-free histology for cancer diagnosis

Jingjin Yu

Rutgers University-New Brunswick

Pushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics

Rui Zhang

Pennsylvania State University

Building robust conversational question answering systems over databases of tabular data

Yu Zhang

University of South Florida

Design of an automated advanced air mobility flight planning system (AAFPS)

Yuke Zhu

University of Texas at Austin

Learning implicit shape affordance for grasping and manipulation

Marinka Zitnik

Harvard University

Actionable graph learning for finding cures for emerging diseases

James Zou

Stanford University

How to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist; to support the development and implementation of Generative AI (GenAI) algorithms and models for supervised fine-tuning, and advance the state of the art with Large Language Models (LLMs), As an Applied Scientist, you will play a critical role in supporting the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA Amazon is seeking an innovative and high-judgement Senior Applied Scientist to join the Privacy Engineering team in the Amazon Privacy Services org. We own products and programs that deliver technical innovation for ensuring compliance with high-impact, urgent regulation across Amazon services worldwide. The Senior Applied Scientist will contribute to the strategic direction for Amazon’s privacy practices while building/owning the compliance approach for individual regulations such as General Data Protection Regulation (GDPR), DMA, Quebec 25 etc. This will require helping to frame, and participating in, high judgment debates and decision making across senior business, technology, legal, and public policy leaders. A great candidate will have a unique combination of experience with innovative data governance technology, high judgement in system architecture decisions and ability to set detailed technical design from ambiguous compliance requirements. You will drive foundational, cross-service decisions, set technical requirements, oversee technical design, and have end to end accountability for delivering technical changes across dozens of different systems. You will have high engagement with WW senior leadership via quarterly reviews, annual organizational planning, and s-team goal updates. Key job responsibilities * Develop information retrieval benchmarks related to code analysis and invent algorithms to optimize identification of privacy requirements and controls. * Develop semantic and syntactic code analysis tools to assess privacy implementations within application code, and automatic code replacement tools to enhance privacy implementations. * Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence for privacy compliance. * Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. A day in the life Amazon Privacy Services own products and programs that deliver technical innovation for ensuring Privacy Amazon services worldwide. We are hiring an innovative and high-judgement Senior Applied Scientist to develop AI solutions for builders across Amazon’s consumer and digital businesses including but not limited to Amazon.com, Amazon Ads, Amazon Go, Prime Video, Devices and more. Our ideal candidate is creative, has excellent problem-solving skills, a solid understanding of computer science fundamentals, deep learning and a customer-focused mindset. The Senior Scientist will serve as the resident expert on the development of AI agents for privacy. They build on their experiences to develop LLMs to develop AI implementations across privacy workflows. They will have responsibilities to mentor junior scientists and engineers develop AI skills. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.