2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

Recipient

University

Research title

Vikram Adve

University of Illinois Urbana-Champaign

Extending the LLVM compiler infrastructure for tensor architectures

Pulkit Agrawal

Massachusetts Institute of Technology

A framework for multi-step planning for manipulating rigid objects

Ron Alterovitz

University of North Carolina at Chapel Hill

Cloud-based motion planning: an enabling technology for next-generation autonomous robots

Jimmy Ba

University of Toronto

Model-based reinforcement learning with causal world models

Saurabh Bagchi

Purdue University—West Lafayette

Content and contention-aware approximate streaming video analytics for edge devices

David Baker Effendi

Stellenbosch University

Dataflow analysis using code property graphs, graph databases and synchronized pushdown systems

Sivaraman Balakrishnan

Carnegie Mellon University

Foundations of robust machine learning: from principled approaches to practice

Elias Bareinboim

Columbia University

Off-policy evaluation through causal modeling

Clark Barrett

Stanford University

Model-based testing of SMT solvers

Lars Birkedal

Aarhus University

Modular reasoning about distributed systems: higher-order distributed separation logic

David Blei

Columbia University

New directions in observational causal inference

Eric Bodden

Paderborn University

HybridCG — dynamically-enriched call-Graph generation of Java enterprise applications

Legand Burge

Howard University

Voice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions

James Caverlee

Texas A&M University, College Station

Fairness in recommendation without demographics

Changyou Chen

University at Buffalo

Scaling up human-action analysis systems

Danqi Chen

Princeton University

Building broad-coverage, structured dense knowledge bases for natural language processing tasks

Helen Chen

University of Waterloo

Optimizing pretrained clinical embeddings for automatic COVID-related ICD coding

Yiran Chen

Duke University

Privacy-preserving representation learning on graphs — a mutual information perspective

Margarita Chli

ETH Zurich

Vision-based emergency landing in urban environments using reinforcement learning and deep learning

Kyunghyun Cho

New York University

Independently controllable attributes for controllable neural text generation

Carlo Ciliberto

University College London

Optimal transport for meta-learning

Loris D’Antoni

University of Wisconsin–Madison

Correct-by-construction IAM policies

David Danks

Carnegie Mellon University

An integrated framework for understanding human-AI hybrid decision-making

Suhas Diggavi

University of California, Los Angeles

Compressed private and secure distributed edge learning

Greg Durrett

University of Texas At Austin

Making conditional text generation fair and factual

Sergio Escalera

Universitat de Barcelona and Computer Vision Center

Portable virtual try-on for smart devices

Jan Faigl

Czech Technical University in Prague

Communication maps building in subterranean environments

Pietro Ferrara

Ca’ Foscari University of Venice

IAM access control policies verification and inference

Katerina Fragkiadaki

Carnegie Mellon University

Generalizing manipulation across objects, configurations and views using a visually-grounded library of behaviors

Guillermo Gallego

Technical University of Berlin

Online in-hand object tracking and grasp failure detection with an event-based camera

Grace Gao

Stanford University

Trustworthy autonomous vehicle localization using a joint model-driven and data-driven approach

Stephanie Gil

Harvard University

Enabling the next generation of coordinated robots: scalable real-time decision making

Luca Giuggioli

University of Bristol

Multi-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering

Jorge Goncalves

University of Melbourne

Integrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks

Ananth Grama

Purdue University—West Lafayette

Scaling causal inference to explainable clinical recommendations

Grace Gu

University of California, Berkeley

Surrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices

Ronghui Gu

Columbia University

Microverification of the Linux KVM hypervisor: proving VM confidentiality and integrity

Aarti Gupta

Princeton University

Learning abstract specifications from distributed program implementations

Saurabh Gupta

University of Illinois Urbana-Champaign

Self-supervised discovery of object states and transitions from unlabeled videos

Daniel Harabor

Monash University

Anytime constraint-based multi-agent pathfinding

Hynek Hermansky

Johns Hopkins University

Multistream lifelong federated learning for machine recognition of speech

Bin Hu

University of Illinois Urbana-Champaign

Provably robust adversarial reinforcement learning for sequential decision making in safety-critical environments

Lifu Huang

Virginia Tech

Event-centric temporal and causal knowledge acquisition and generalization for natural language understanding

Dinesh Jayaraman

University of Pennsylvania

Learning modular dynamics models for plug-and-play visual control

Sven Koenig

University of Southern California

Improving planning and plan execution for warehouse automation

Laura Kovacs

TU Wien

FOREST: first-order reasoning for ensuring system security

Arun Kumar

University of California, San Diego

Improving automated feature type inference for AutoML on tabular data

Himabindu Lakkaraju

Harvard University

Towards reliable and robust model explanations

Kevin Leyton-Brown

University of British Columbia

Automated machine learning for tabular datasets using hyperband embedded reinforcement learning

Bo Li

University of Illinois Urbana-Champaign

Machine learning evaluation as a service for robustness, fairness, and privacy utilities

Ke Li

University of Exeter

Many hands make work light: multi-task deep semantic learning for testing web application firewalls

Zhiqiang Lin

Ohio State University

Type-aware recovery of symbol names in binary code: a machine learning based approach

Jeffrey Liu

Massachusetts Institute of Technology

Integrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum

Michael Mahoney

University of California, Berkeley

Systematic methods for efficient inference and training of neural networks

Radu Marculescu

University of Texas

New directions for 3D object detection: distributed inference on edge devices using knowledge distillation

Ruben Martins

Carnegie Mellon University

Improving performance and trust of MaxSAT solvers

Jiri Matas

Czech Technical University in Prague

Training neural networks on non-differentiable losses

Michael Milford

Queensland University of Technology

Complementarity-aware multi-process fusion for long term localization

Heather Miller

Carnegie Mellon University

Directed automated explicit-state model checking for distributed applications

Ndapa Nakashole

University of California, San Diego

Learning representations for voice-based conversational agents for older adults

Shrikanth Narayanan

University of Southern California

Toward inclusive human-AI conversational experiences for children

Lerrel Pinto

New York University

Learning to manipulate deformable objects through robust simulations

Ravi Ramamoorthi

University of California, San Diego

Sparse multi-view object acquisition using learned volumetric representations

Philip Resnik

University of Maryland, College Park

Advanced topic modeling to support the understanding of COVID-19 and its effects

Daniela Rus

Massachusetts Institute of Technology

Learning to plan through imagined self-play for multi-agent system

Supreeth Shashikumar

University of California, San Diego

Privacy preserving continual learning with applications to critical care

Robert Shepherd

Cornell University

Enduring and adaptive robots via electrochemical blood

Cong Shi

University of Michigan, Ann Arbor

Machine learning for personalized assortment optimization

Florian Shkurti

University of Toronto

Generating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators

Abhinav Shrivastava

University of Maryland, College Park

The pursuit of knowledge: discovering and localizing new concepts using dual memory

Roland Siegwart

ETH Zurich

Safe self-calibration of hybrid aerial vehicles

Sameer Singh

University of California, Irvine

Detecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence

Noah Smith

University of Washington - Seattle

Language model customization

Mahdi Soltanolkotabi

University of Southern California

Artificial intelligence for fast and portable medical imaging (with limited training data)

Seung Woo Son

University of Massachusetts Lowell

Reliable and accurate anomaly detection in edge nodes using sparsity profile

Dawn Song

University of California, Berkeley

Knowledge-enhanced cyber threat hunting

Dezhen Song

Texas A&M University, College Station

Optoacoustic material and structure pretouch sensing at robot fingertip

Shuran Song

Columbia University

Dexterity through diversity:learning a generalizable grasping policy for diverse end-effectors

Yizhou Sun

University of California, Los Angeles

Accelerating graph neural network training

Russ Tedrake

Massachusetts Institute of Technology

Intuitive physics for manipulation

James Tompkin

Brown University

Real-time multi-camera fusion for unoccluded VR robot teleoperation

Emina Torlak

University of Washington - Seattle

Automated verification of JIT compilers for BPF

Marynel Vazquez

Yale University

Evaluating social robot navigation via online human-driven simulations

Nisheeth Vishnoi

Yale University

Fair and error-resilient algorithms for AI and ML

Gang Wang

University of Illinois at Urbana–Champaign

Combating concept drift in security applications via proactive data synthesis

Hao Wang

Rutgers University-New Brunswick

Structured domain adaptation with applications to personalization and forecasting

James Wang

Pennsylvania State University

Affective and social interaction between human and intelligent machine

Gloria Washington

Howard University

Towards identification of uncomfortable speech in conversations

Chuan Wu

The University of Hong Kong

Compilation optimization in distributed DNN training: joining OP and tensor fusion/partition

Eugene Wu

Columbia University

Human-in-the-loop data debugging for ML-oriented analytics

Jiajun Wu

Stanford University

Implicit dynamic scene representation learning for robotics

Ming-Ru Wu

Dana-Farber Cancer Institute

From bench to clinic – machine-learning based cancer immunotherapy design

Diyi Yang

Georgia Institute of Technology

Abstractive conversation summarization at scale

Sixian You

Massachusetts Institute of Technology

AI-driven label-free histology for cancer diagnosis

Jingjin Yu

Rutgers University-New Brunswick

Pushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics

Rui Zhang

Pennsylvania State University

Building robust conversational question answering systems over databases of tabular data

Yu Zhang

University of South Florida

Design of an automated advanced air mobility flight planning system (AAFPS)

Yuke Zhu

University of Texas at Austin

Learning implicit shape affordance for grasping and manipulation

Marinka Zitnik

Harvard University

Actionable graph learning for finding cures for emerging diseases

James Zou

Stanford University

How to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, VA, Herndon
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team is seeking an experienced Delivery Practice Manager (DPM) to join our ProServe Shared Delivery Team (SDT) at Amazon Web Services (AWS). In this role, you'll manage a team of ProServe Delivery Consultants while supporting AWS enterprise customers through transformative projects. You'll leverage your IT and/or Management Consulting background to serve as a strategic advisor to customers, partners, and internal AWS teams. As a DPM you will be responsible for building and managing a team of Delivery Consultants and/or Engagement Managers working with customers and partners to architect and implement innovative solutions. You’ll routinely engage with Director, C-level executives, and governing boards, whilst being responsible for opportunity capture and driving engagement delivery. You’ll work closely with partner teams; drive business development initiatives through thought leadership; provide portfolio guidance and oversight; and meet and exceed customer satisfaction targets. As a DPM you are primarily focused directly or through their teams, on understanding and defining business outcomes for customers by building trust, identifying applicable AWS Professional Services offerings, and creating proposals and SOW’s. Your experience gained leading teams within the technology sector, will equip you with the ability to optimize team performance through implementing tailored people development plans, ensuring your teams are aligned to customer needs, and have the skills and capacity to address customer outcomes. Possessing the ability to translate technical concepts into business value for customers and then talk in technical depth with teams, you will cultivate strong customer, Amazon Global Sales (AGS), and ProServe team relationships which enables exceptional business performance. DPMs success is primarily measured by consistently delivering customer engagements by supporting sales through scoping technical requirements for an engagement, delivering engagements on time, within budget, and exceeding customer expectations. They will hold the Practice total utilization goal and be responsible for optimizing team performance. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities • Building and managing a high-performing team of Delivery Consultants • Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to deploy solutions and provide input on new features • Developing and overseeing the implementation of innovative, forward-looking IT strategies for customers • Managing practice P&L, ensuring on-time and within-budget delivery of customer engagements • Driving business development initiatives and exceed customer satisfaction targets
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.