amazon research awards recipients logo.jpg
Amazon today publicly announced 74 recipients from the Amazon Research Awards Fall 2021 call for proposals. The recipients, who represent 51 universities in 17 countries, have access to more than 300 Amazon public datasets, and can utilize AWS AI/ML services and tools.

75 Amazon Research Awards recipients announced

The awardees represent 52 universities in 17 countries. Recipients have access to more than 300 Amazon public datasets, and can utilize AWS AI/ML services and tools.

The Amazon Research Awards is a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing 75 award recipients who represent 52 universities in 17 countries. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

Top row, left to right: Aws Albarghouthi, Nada Amin, Clark Barrett, Ivan Beschastnikh, William Bowman, Yinzhi Cao, Trevor Carlson, Marsha Chechik; second row, left to right: Cas Cremers, Derek Dreyer, Marcelo Frias, Sicun Gao, Roberto Giacobazzi, Ronghui Gu, Jean-Baptiste Jeannin, Steve Ko; third row, left to right: James Noble, Rohan Padhye, Pavithra Prabhakar, Francesco Ranzato, Talia Ringer, Camilo Rocha, Andrei Sabelfeld, Ilya Sergey; and bottom row, left to right: Michele Sevegnani, Fu Song, Zhendong Su, Daniel Varro, Yakir Vizel, Thomas Wies, Anton Wijs, and Meng Xu.
Top row, left to right: Aws Albarghouthi, Nada Amin, Clark Barrett, Ivan Beschastnikh, William Bowman, Yinzhi Cao, Trevor Carlson, Marsha Chechik; second row, left to right: Cas Cremers, Derek Dreyer, Marcelo Frias, Sicun Gao, Roberto Giacobazzi, Ronghui Gu, Jean-Baptiste Jeannin, Steve Ko; third row, left to right: James Noble, Rohan Padhye, Pavithra Prabhakar, Francesco Ranzato, Talia Ringer, Camilo Rocha, Andrei Sabelfeld, Ilya Sergey; and bottom row, left to right: Michele Sevegnani, Fu Song, Zhendong Su, Daniel Varro, Yakir Vizel, Thomas Wies, Anton Wijs, and Meng Xu are among the recipients from the Amazon Research Awards Fall 2021 call for proposals under the Automated Reasoning CFP.

This announcement includes awards funded under seven call for proposals during the Fall 2021 cycle: AI for Information Security, Amazon Device Security and Privacy, Amazon Payments, AWS Automated Reasoning, Data for Social Sustainability, Prime Video, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Top row, left to right: Nora Ayanian, Nicola Bezzo, Luca Carlone, Venanzio Cichella, Jia Deng, Nima Fazeli, Maani Ghaffari-Jadidi; second row, left to right: Grace Gu, Leonidas Guibas, Felix Heide, Ralph Hollis, Robert Katzschmann, Sven Koenig, George Konidaris; third row, left to right: Sergey Levine, Jennifer Lewis, Maja Matarić, Jan Peters, Lerrel Pinto, Robert Platt, Nancy Pollard; and bottom row, left to right: Alessandro Rizzo, Oren Salzman, Roland Siegwart, Pratap Tokekar, James Wang, Shenlong Wang, and Yuke Zhu.
Top row, left to right: Nora Ayanian, Nicola Bezzo, Luca Carlone, Venanzio Cichella, Jia Deng, Nima Fazeli, Maani Ghaffari-Jadidi; second row, left to right: Grace Gu, Leonidas Guibas, Felix Heide, Ralph Hollis, Robert Katzschmann, Sven Koenig, George Konidaris; third row, left to right: Sergey Levine, Jennifer Lewis, Maja Matarić, Jan Peters, Lerrel Pinto, Robert Platt, Nancy Pollard; and bottom row, left to right: Alessandro Rizzo, Oren Salzman, Roland Siegwart, Pratap Tokekar, James Wang, Shenlong Wang, and Yuke Zhu are among the recipients from the Amazon Research Awards Fall 2021 call for proposals under the Robotics CFP.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Top row, left to right:NAMES; second row, left to right:NAMES are among the recipients from the Amazon Research Awards Winter 2022 call for proposals under the Alexa: Fairness in AI CFP.
Top row, left to right:NAMES; second row, left to right:NAMES are among the recipients from the Amazon Research Awards Winter 2022 call for proposals under the Alexa: Fairness in AI CFP.

"Research in automated reasoning is deeply intertwined with a broad range of other research areas, touching machine learning, hardware and software engineering, robotics, and life sciences," said Daniel Kroening, an Automated Reasoning Group senior principal scientist. "The 2021 Amazon Research Awards reflect this breadth, and the interdisciplinary nature of research that is necessary to take computing one step closer to that magic spark that drives human reasoning."

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The table below lists, in alphabetical order, Fall 2021 cycle call-for-proposal recipients.

Recipient

University

Research title

Aws Albarghouthi

University of Wisconsin-Madison

Teaching SMT Solvers Probability Theory

Nada Amin

Harvard University

Extensible Models and Proofs

Nora Ayanian

Brown University

Large-Scale Labeled Multi-Agent Pathfinding for Warehouses

Clark Barrett

Stanford University

HydraScale: Solving SMT Queries in the Serverless Cloud

Ivan Beschastnikh

University of British Columbia

Compiling Distributed System Models into Implementations

Nicola Bezzo

University of Virginia

Towards Safe and Agile Robot Navigation in Occluding and Dynamic Environments

William Bowman

University of British Columbia

Static reasoning for memory in compilers and intermediate languages

Yinzhi Cao

Johns Hopkins University

Automatic Static Resource Analysis for Serverless Computing

Luca Carlone

Massachusetts Institute of Technology

Real-time Spatial AI for Robotics

Trevor Carlson

National University of Singapore

Accelerating SAT Solving with a Flexible FPGA-Programming Platform

Marsha Chechik

University Of Toronto

Unsatisfiability Proofs for Monotonic Theories

Venanzio Cichella

University Of Iowa

Concurrent allocation and planning for large-scale multi-robot systems

Cas Cremers

CISPA Helmholtz Center for Information Security

KeyLife: Automated Formal Analysis for Key Lifecycles in Security Protocols with Policies, Delegation, and Compromise

Elizabeth Croft

Monash University

Help me!: Humans supporting robots through Augmented Reality

Jia Deng

Princeton University

Optimization-Inspired Neural Networks for Visual SLAM

Derek Dreyer

MPI - SWS

RefinedRust: Automating the Verification of Rust Programs in the Presence of Unsafe Code

Tudor Dumitras

University of Maryland, College Park

Mitigating the impact of behavior variability and label noise on ML-based malware detectors

Nima Fazeli

University of Michigan

Object Manipulation with High-Resolution Tactile Sensors

Earlence Fernandes

University of Wisconsin-Madison

Verifiable Distributed Computation

Marcelo Frias

Buenos Aires Institute of Technology

Modular Bounded Verification with Expressive Contracts

Sicun Gao

University of California, San Diego

Interior Search Methods in SMT

Maani Ghaffari-Jadidi

University of Michigan

Robust low-cost dead reckoning and localization for home robotics using invariant state estimation

Roberto Giacobazzi

University of Verona

Implicit program analysis

Ronghui Gu

Columbia University

Learning Inductive Invariants for Real Distributed Protocols

Grace Gu

University of California, Berkeley

Deep learning-enabled robust grasping for pneumatic actuators

Leonidas Guibas

Stanford University

GeneralPurpose 3D Perception of Object Functionality

Arie Gurfinkel

University of Waterloo

Formal Proofs for Trusted Execution Environments

Hamed Haddadi

Imperial College London

Auditable Model Privacy using TEEs

Felix Heide

Princeton University

Inverse Neural Rendering

Ralph Hollis

Carnegie Mellon University

Low Cost Dynamic Mobile Robots for Research and Teaching

Hongxin Hu

SUNY, Buffalo

Explaining Learning-based Intrusion Detection Systems for Active Intrusion Responses

Jean-Baptiste Jeannin

University of Michigan-Ann Arbor

Automatic Verification of Distributed Systems Implementations

Robert Katzschmann

ETH Zurich

Design and Control Optimization of Soft Gripper Mechanisms for Manipulation

Anirudh Sivaraman Kaushalram

New York University

Observing and controlling microservice deployments

Steve Ko

Simon Fraser University

Practical Symbolic Execution for Rust

Sven Koenig

University of Southern California

Hybrid Search- and Traffic-Based MAPF Systems for Fulfillment Centers

George Konidaris

Brown University

Learning Composable Manipulation Skills

Emmanuel Letouzé

Pompeu Fabra University

Leveraging Digital Data for Monitoring Human Rights and Social Dynamics Along and Around Value Chains

Sergey Levine

University of California, Berkeley

Robotic Learning with Reusable Data

Jennifer Lewis

Harvard University

Computational Co-Design of Dexterous Rigid-Soft Grippers With Intrinsic Tactile-Sensing-Based Control

Maja Matarić

University of Southern California

Learning User Preferences for In-Home Robots Through In Situ Augmented Reality

James Noble

Victoria University Of Wellington

“Programming Made Hard” Made Easier: Improving Dafny’s Human Factors

Rohan Padhye

Carnegie Mellon University

Coverage-Guided Property-Based Testing of Concurrent Programs

Jan Peters

TU Darmstadt

Learning Robot Manipulation from Tactile Feedback

Lerrel Pinto

New York University

Visual Imitation in the Wild through Decoupled Representation Learning

Robert Platt

Northeastern University

On-robot manipulation learning via equivariant models

Nancy Pollard

Carnegie Mellon

Contact Areas for Manipulation Capture, Retargeting, and Hand Design

Pavithra Prabhakar

Kansas State University

Conformance Checking of Evolving ML Software Systems

Francesco Ranzato

University of Verona

Implicit program analysis

Sanjay Rao

Purdue University

Answering counterfactuals from offline data for video streaming

Bruno Ribeiro

Purdue University

Answering counterfactuals from offline data for video streaming

Talia Ringer

University of Illinois Urbana-Champaign

Neurosymbolic Proof Synthesis & Repair

Alessandro Rizzo

Politecnico di Torino

Physics-Informed Machine Learning for Trustworthy Control of Autonomous Robots

Camilo Rocha

Pontificia Universidad Javeriana Cali

Probabilistic and Symbolic Tools for P Program Verification

Andrei Sabelfeld

Chalmers University of Technology

DeepCrawl: Automated Reasoning for Deep Web Crawling

Oren Salzman

Technion - Israel Institute of Technology

Increasing throughput in automated warehouses via environment manipulation

Ilya Sergey

National University of Singapore

Scaling Automated Verification of Distributed Protocols with Specification Transformation and Synthesis

Michele Sevegnani

University of Glasgow

From Whiteboards to Models: Diagrammatic Formal Modelling for Everyone

Roland Siegwart

ETH Zurich

Autonomous Navigation of Aerial Robotic Manipulators in Unstructured Indoor and Outdoor Environments

Ramesh Sitaraman

University of Massachusetts Amherst

Design and Evaluation of ABR Algorithms for High-Performance Video Delivery

Fu Song

ShanghaiTech University

Efficient and Precise Verification for Constant-Time and Time-Balancing of Cryptosystems

Zhendong Su

ETH Zurich

Practical Techniques for Reliable, Robust and Performant SMT Solvers

Jiliang Tang

Michigan State University

Taming Graph Anomaly Detection via Graph Neural Networks

Pratap Tokekar

University of Maryland, College Park

Multi-Robot Coordination through the Lens of Risk

Daniel Varro

McGill University

Graph Solver as a Service

Yakir Vizel

Technion - Israel Institute of Technology

Quantified Invariants

David Wagner

University of California, Berkeley

Machine Learning for Malware Detection: Robustness against Concept Drift

James Wang

Pennsylvania State University

Affective and Social Interaction between Human and Intelligent Machine in Daily Activities

Shenlong Wang

University of Illinois Urbana-Champaign

Safely Test Autonomous Vehicles with Augmented Reality

Thomas Wies

New York University

A Modular Library of Verified Concurrent Search Structure Algorithms

Anton Wijs

Eindhoven University of Technology

Many-Core Acceleration of State Space Construction and Analysis

Xinyu Xing

Northwestern University

Battling Noisy-label Classification

Meng Xu

University Of Waterloo

Finding Specification Blind Spots with Fuzz Testing

Yuke Zhu

University of Texas at Austin

Interactive Learning Framework for Building Structured Object Models from Play

Andrew Zisserman

University of Oxford

Audio-Visual Synchronisation for General Videos

Related content

US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop vision language models (VLMs) on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: - Exploring the data and brainstorming and prioritizing ideas for model development - Implementing new features - Training models in support of experimental or performance goals - T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. You would work collaboratively with teammates to develop and use a python codebase for fine-tuning VLMs. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, GitLab, and Visual Studio Code. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to fine-tune VLMs on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train VLMs on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Implement new features to the code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop computer vision models on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: - Exploring the data and brainstorming and prioritizing ideas for model development - Implementing new features in our sizable code base - Training models in support of experimental or performance goals - T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. Three to four days a week, you would travel to the customer site in Northern Virginia to perform tasking as described below. Weekdays when you do not travel to the customer site, you would work from your local Amazon office. You would work collaboratively with teammates to use and contribute to a well-maintained code base that the team has developed over the last several years, almost entirely in python. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, Apache AirFlow, GitLab, and Visual Studio Code. We are a very collaborative team, and regularly teach and learn from each other, so, if you are familiar with some of these technologies, but unfamiliar with others, we encourage you to apply - especially if you are someone who likes to learn. We are always learning on the job ourselves. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to develop computer vision models on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train deep neural network models on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Incorporate model R&D from low-side researchers - Implement new features to the model development code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, MA, N.reading
Amazon Industrial Robotics (AIR) is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of the latest software and AI tools for robots. We are seeking an expert to lead the development of our SLAM and Spatial AI module. In this role, you will create methods that will enable our robot to perceive the environment and navigate with unrivaled vision and fidelity. The system will combine an array of diverse sensors with simultaneous localization and mapping software that continuously updates the map in real-time automatically. It will have the capability to ‘see’ and identify different objects, people, vehicles, and places as it moves and react to moving people and vehicles in an intelligent way. The system combines a mix of high-performance sensors with simultaneous localization and mapping software that builds and continuously updates maps in real-time, completely automatically. It has the capability to ‘see’ and identify different objects, people, vehicles, and places as it moves and react to moving people and vehicles in an intelligent way. Key job responsibilities - Analyze, design, develop, and test existing and new perception capabilities using cameras and LIDAR sensor inputs for obstacle detection and semantic understanding. - Research, design, implement and evaluate scientific approaches to a variety of autonomy challenges.. - Create experiments and prototype implementations of new perception algorithms. - Deliver high quality production level code (C++ or Python) and support systems in production. - Collaborate with other functional teams in a robotics organization. - Collaborate closely with hardware engineering team members on developing systems from prototyping to production level. - Represent Amazon in academia community through publications and scientific presentations. - Work with stakeholders across hardware, science, and operations teams to iterate on systems design and implementation.
US, WA, Bellevue
Why this job is awesome? - This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. - MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. - We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. - Do you want to join an innovative team of scientists and engineers who use optimization, machine learning and Gen-AI techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the same-day delivery service of Amazon? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the Delivery Experience Machine Learning team! Key job responsibilities · Research and implement Optimization, ML and Gen-AI techniques to create scalable and effective models in Delivery Experience (DEX) systems · Design and develop optimization models and reinforcement learning models to improve quality of same-day selections · Apply LLM technology to empower CX features · Establishing scalable, efficient, automated processes for large scale data analysis and causal inference
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!