amazon research awards recipients logo.jpg
Amazon today publicly announced 74 recipients from the Amazon Research Awards Fall 2021 call for proposals. The recipients, who represent 51 universities in 17 countries, have access to more than 300 Amazon public datasets, and can utilize AWS AI/ML services and tools.

75 Amazon Research Awards recipients announced

The awardees represent 52 universities in 17 countries. Recipients have access to more than 300 Amazon public datasets, and can utilize AWS AI/ML services and tools.

The Amazon Research Awards is a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing 75 award recipients who represent 52 universities in 17 countries. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

Top row, left to right: Aws Albarghouthi, Nada Amin, Clark Barrett, Ivan Beschastnikh, William Bowman, Yinzhi Cao, Trevor Carlson, Marsha Chechik; second row, left to right: Cas Cremers, Derek Dreyer, Marcelo Frias, Sicun Gao, Roberto Giacobazzi, Ronghui Gu, Jean-Baptiste Jeannin, Steve Ko; third row, left to right: James Noble, Rohan Padhye, Pavithra Prabhakar, Francesco Ranzato, Talia Ringer, Camilo Rocha, Andrei Sabelfeld, Ilya Sergey; and bottom row, left to right: Michele Sevegnani, Fu Song, Zhendong Su, Daniel Varro, Yakir Vizel, Thomas Wies, Anton Wijs, and Meng Xu.
Top row, left to right: Aws Albarghouthi, Nada Amin, Clark Barrett, Ivan Beschastnikh, William Bowman, Yinzhi Cao, Trevor Carlson, Marsha Chechik; second row, left to right: Cas Cremers, Derek Dreyer, Marcelo Frias, Sicun Gao, Roberto Giacobazzi, Ronghui Gu, Jean-Baptiste Jeannin, Steve Ko; third row, left to right: James Noble, Rohan Padhye, Pavithra Prabhakar, Francesco Ranzato, Talia Ringer, Camilo Rocha, Andrei Sabelfeld, Ilya Sergey; and bottom row, left to right: Michele Sevegnani, Fu Song, Zhendong Su, Daniel Varro, Yakir Vizel, Thomas Wies, Anton Wijs, and Meng Xu are among the recipients from the Amazon Research Awards Fall 2021 call for proposals under the Automated Reasoning CFP.

This announcement includes awards funded under seven call for proposals during the Fall 2021 cycle: AI for Information Security, Amazon Device Security and Privacy, Amazon Payments, AWS Automated Reasoning, Data for Social Sustainability, Prime Video, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Top row, left to right: Nora Ayanian, Nicola Bezzo, Luca Carlone, Venanzio Cichella, Jia Deng, Nima Fazeli, Maani Ghaffari-Jadidi; second row, left to right: Grace Gu, Leonidas Guibas, Felix Heide, Ralph Hollis, Robert Katzschmann, Sven Koenig, George Konidaris; third row, left to right: Sergey Levine, Jennifer Lewis, Maja Matarić, Jan Peters, Lerrel Pinto, Robert Platt, Nancy Pollard; and bottom row, left to right: Alessandro Rizzo, Oren Salzman, Roland Siegwart, Pratap Tokekar, James Wang, Shenlong Wang, and Yuke Zhu.
Top row, left to right: Nora Ayanian, Nicola Bezzo, Luca Carlone, Venanzio Cichella, Jia Deng, Nima Fazeli, Maani Ghaffari-Jadidi; second row, left to right: Grace Gu, Leonidas Guibas, Felix Heide, Ralph Hollis, Robert Katzschmann, Sven Koenig, George Konidaris; third row, left to right: Sergey Levine, Jennifer Lewis, Maja Matarić, Jan Peters, Lerrel Pinto, Robert Platt, Nancy Pollard; and bottom row, left to right: Alessandro Rizzo, Oren Salzman, Roland Siegwart, Pratap Tokekar, James Wang, Shenlong Wang, and Yuke Zhu are among the recipients from the Amazon Research Awards Fall 2021 call for proposals under the Robotics CFP.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Top row, left to right:NAMES; second row, left to right:NAMES are among the recipients from the Amazon Research Awards Winter 2022 call for proposals under the Alexa: Fairness in AI CFP.
Top row, left to right:NAMES; second row, left to right:NAMES are among the recipients from the Amazon Research Awards Winter 2022 call for proposals under the Alexa: Fairness in AI CFP.

"Research in automated reasoning is deeply intertwined with a broad range of other research areas, touching machine learning, hardware and software engineering, robotics, and life sciences," said Daniel Kroening, an Automated Reasoning Group senior principal scientist. "The 2021 Amazon Research Awards reflect this breadth, and the interdisciplinary nature of research that is necessary to take computing one step closer to that magic spark that drives human reasoning."

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The table below lists, in alphabetical order, Fall 2021 cycle call-for-proposal recipients.

Recipient

University

Research title

Aws Albarghouthi

University of Wisconsin-Madison

Teaching SMT Solvers Probability Theory

Nada Amin

Harvard University

Extensible Models and Proofs

Nora Ayanian

Brown University

Large-Scale Labeled Multi-Agent Pathfinding for Warehouses

Clark Barrett

Stanford University

HydraScale: Solving SMT Queries in the Serverless Cloud

Ivan Beschastnikh

University of British Columbia

Compiling Distributed System Models into Implementations

Nicola Bezzo

University of Virginia

Towards Safe and Agile Robot Navigation in Occluding and Dynamic Environments

William Bowman

University of British Columbia

Static reasoning for memory in compilers and intermediate languages

Yinzhi Cao

Johns Hopkins University

Automatic Static Resource Analysis for Serverless Computing

Luca Carlone

Massachusetts Institute of Technology

Real-time Spatial AI for Robotics

Trevor Carlson

National University of Singapore

Accelerating SAT Solving with a Flexible FPGA-Programming Platform

Marsha Chechik

University Of Toronto

Unsatisfiability Proofs for Monotonic Theories

Venanzio Cichella

University Of Iowa

Concurrent allocation and planning for large-scale multi-robot systems

Cas Cremers

CISPA Helmholtz Center for Information Security

KeyLife: Automated Formal Analysis for Key Lifecycles in Security Protocols with Policies, Delegation, and Compromise

Elizabeth Croft

Monash University

Help me!: Humans supporting robots through Augmented Reality

Jia Deng

Princeton University

Optimization-Inspired Neural Networks for Visual SLAM

Derek Dreyer

MPI - SWS

RefinedRust: Automating the Verification of Rust Programs in the Presence of Unsafe Code

Tudor Dumitras

University of Maryland, College Park

Mitigating the impact of behavior variability and label noise on ML-based malware detectors

Nima Fazeli

University of Michigan

Object Manipulation with High-Resolution Tactile Sensors

Earlence Fernandes

University of Wisconsin-Madison

Verifiable Distributed Computation

Marcelo Frias

Buenos Aires Institute of Technology

Modular Bounded Verification with Expressive Contracts

Sicun Gao

University of California, San Diego

Interior Search Methods in SMT

Maani Ghaffari-Jadidi

University of Michigan

Robust low-cost dead reckoning and localization for home robotics using invariant state estimation

Roberto Giacobazzi

University of Verona

Implicit program analysis

Ronghui Gu

Columbia University

Learning Inductive Invariants for Real Distributed Protocols

Grace Gu

University of California, Berkeley

Deep learning-enabled robust grasping for pneumatic actuators

Leonidas Guibas

Stanford University

GeneralPurpose 3D Perception of Object Functionality

Arie Gurfinkel

University of Waterloo

Formal Proofs for Trusted Execution Environments

Hamed Haddadi

Imperial College London

Auditable Model Privacy using TEEs

Felix Heide

Princeton University

Inverse Neural Rendering

Ralph Hollis

Carnegie Mellon University

Low Cost Dynamic Mobile Robots for Research and Teaching

Hongxin Hu

SUNY, Buffalo

Explaining Learning-based Intrusion Detection Systems for Active Intrusion Responses

Jean-Baptiste Jeannin

University of Michigan-Ann Arbor

Automatic Verification of Distributed Systems Implementations

Robert Katzschmann

ETH Zurich

Design and Control Optimization of Soft Gripper Mechanisms for Manipulation

Anirudh Sivaraman Kaushalram

New York University

Observing and controlling microservice deployments

Steve Ko

Simon Fraser University

Practical Symbolic Execution for Rust

Sven Koenig

University of Southern California

Hybrid Search- and Traffic-Based MAPF Systems for Fulfillment Centers

George Konidaris

Brown University

Learning Composable Manipulation Skills

Emmanuel Letouzé

Pompeu Fabra University

Leveraging Digital Data for Monitoring Human Rights and Social Dynamics Along and Around Value Chains

Sergey Levine

University of California, Berkeley

Robotic Learning with Reusable Data

Jennifer Lewis

Harvard University

Computational Co-Design of Dexterous Rigid-Soft Grippers With Intrinsic Tactile-Sensing-Based Control

Maja Matarić

University of Southern California

Learning User Preferences for In-Home Robots Through In Situ Augmented Reality

James Noble

Victoria University Of Wellington

“Programming Made Hard” Made Easier: Improving Dafny’s Human Factors

Rohan Padhye

Carnegie Mellon University

Coverage-Guided Property-Based Testing of Concurrent Programs

Jan Peters

TU Darmstadt

Learning Robot Manipulation from Tactile Feedback

Lerrel Pinto

New York University

Visual Imitation in the Wild through Decoupled Representation Learning

Robert Platt

Northeastern University

On-robot manipulation learning via equivariant models

Nancy Pollard

Carnegie Mellon

Contact Areas for Manipulation Capture, Retargeting, and Hand Design

Pavithra Prabhakar

Kansas State University

Conformance Checking of Evolving ML Software Systems

Francesco Ranzato

University of Verona

Implicit program analysis

Sanjay Rao

Purdue University

Answering counterfactuals from offline data for video streaming

Bruno Ribeiro

Purdue University

Answering counterfactuals from offline data for video streaming

Talia Ringer

University of Illinois Urbana-Champaign

Neurosymbolic Proof Synthesis & Repair

Alessandro Rizzo

Politecnico di Torino

Physics-Informed Machine Learning for Trustworthy Control of Autonomous Robots

Camilo Rocha

Pontificia Universidad Javeriana Cali

Probabilistic and Symbolic Tools for P Program Verification

Andrei Sabelfeld

Chalmers University of Technology

DeepCrawl: Automated Reasoning for Deep Web Crawling

Oren Salzman

Technion - Israel Institute of Technology

Increasing throughput in automated warehouses via environment manipulation

Ilya Sergey

National University of Singapore

Scaling Automated Verification of Distributed Protocols with Specification Transformation and Synthesis

Michele Sevegnani

University of Glasgow

From Whiteboards to Models: Diagrammatic Formal Modelling for Everyone

Roland Siegwart

ETH Zurich

Autonomous Navigation of Aerial Robotic Manipulators in Unstructured Indoor and Outdoor Environments

Ramesh Sitaraman

University of Massachusetts Amherst

Design and Evaluation of ABR Algorithms for High-Performance Video Delivery

Fu Song

ShanghaiTech University

Efficient and Precise Verification for Constant-Time and Time-Balancing of Cryptosystems

Zhendong Su

ETH Zurich

Practical Techniques for Reliable, Robust and Performant SMT Solvers

Jiliang Tang

Michigan State University

Taming Graph Anomaly Detection via Graph Neural Networks

Pratap Tokekar

University of Maryland, College Park

Multi-Robot Coordination through the Lens of Risk

Daniel Varro

McGill University

Graph Solver as a Service

Yakir Vizel

Technion - Israel Institute of Technology

Quantified Invariants

David Wagner

University of California, Berkeley

Machine Learning for Malware Detection: Robustness against Concept Drift

James Wang

Pennsylvania State University

Affective and Social Interaction between Human and Intelligent Machine in Daily Activities

Shenlong Wang

University of Illinois Urbana-Champaign

Safely Test Autonomous Vehicles with Augmented Reality

Thomas Wies

New York University

A Modular Library of Verified Concurrent Search Structure Algorithms

Anton Wijs

Eindhoven University of Technology

Many-Core Acceleration of State Space Construction and Analysis

Xinyu Xing

Northwestern University

Battling Noisy-label Classification

Meng Xu

University Of Waterloo

Finding Specification Blind Spots with Fuzz Testing

Yuke Zhu

University of Texas at Austin

Interactive Learning Framework for Building Structured Object Models from Play

Andrew Zisserman

University of Oxford

Audio-Visual Synchronisation for General Videos

Related content

US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.