amazon research awards recipients logo.jpg
Amazon today publicly announced 74 recipients from the Amazon Research Awards Fall 2021 call for proposals. The recipients, who represent 51 universities in 17 countries, have access to more than 300 Amazon public datasets, and can utilize AWS AI/ML services and tools.

75 Amazon Research Awards recipients announced

The awardees represent 52 universities in 17 countries. Recipients have access to more than 300 Amazon public datasets, and can utilize AWS AI/ML services and tools.

The Amazon Research Awards is a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing 75 award recipients who represent 52 universities in 17 countries. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

Top row, left to right: Aws Albarghouthi, Nada Amin, Clark Barrett, Ivan Beschastnikh, William Bowman, Yinzhi Cao, Trevor Carlson, Marsha Chechik; second row, left to right: Cas Cremers, Derek Dreyer, Marcelo Frias, Sicun Gao, Roberto Giacobazzi, Ronghui Gu, Jean-Baptiste Jeannin, Steve Ko; third row, left to right: James Noble, Rohan Padhye, Pavithra Prabhakar, Francesco Ranzato, Talia Ringer, Camilo Rocha, Andrei Sabelfeld, Ilya Sergey; and bottom row, left to right: Michele Sevegnani, Fu Song, Zhendong Su, Daniel Varro, Yakir Vizel, Thomas Wies, Anton Wijs, and Meng Xu.
Top row, left to right: Aws Albarghouthi, Nada Amin, Clark Barrett, Ivan Beschastnikh, William Bowman, Yinzhi Cao, Trevor Carlson, Marsha Chechik; second row, left to right: Cas Cremers, Derek Dreyer, Marcelo Frias, Sicun Gao, Roberto Giacobazzi, Ronghui Gu, Jean-Baptiste Jeannin, Steve Ko; third row, left to right: James Noble, Rohan Padhye, Pavithra Prabhakar, Francesco Ranzato, Talia Ringer, Camilo Rocha, Andrei Sabelfeld, Ilya Sergey; and bottom row, left to right: Michele Sevegnani, Fu Song, Zhendong Su, Daniel Varro, Yakir Vizel, Thomas Wies, Anton Wijs, and Meng Xu are among the recipients from the Amazon Research Awards Fall 2021 call for proposals under the Automated Reasoning CFP.

This announcement includes awards funded under seven call for proposals during the Fall 2021 cycle: AI for Information Security, Amazon Device Security and Privacy, Amazon Payments, AWS Automated Reasoning, Data for Social Sustainability, Prime Video, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Top row, left to right: Nora Ayanian, Nicola Bezzo, Luca Carlone, Venanzio Cichella, Jia Deng, Nima Fazeli, Maani Ghaffari-Jadidi; second row, left to right: Grace Gu, Leonidas Guibas, Felix Heide, Ralph Hollis, Robert Katzschmann, Sven Koenig, George Konidaris; third row, left to right: Sergey Levine, Jennifer Lewis, Maja Matarić, Jan Peters, Lerrel Pinto, Robert Platt, Nancy Pollard; and bottom row, left to right: Alessandro Rizzo, Oren Salzman, Roland Siegwart, Pratap Tokekar, James Wang, Shenlong Wang, and Yuke Zhu.
Top row, left to right: Nora Ayanian, Nicola Bezzo, Luca Carlone, Venanzio Cichella, Jia Deng, Nima Fazeli, Maani Ghaffari-Jadidi; second row, left to right: Grace Gu, Leonidas Guibas, Felix Heide, Ralph Hollis, Robert Katzschmann, Sven Koenig, George Konidaris; third row, left to right: Sergey Levine, Jennifer Lewis, Maja Matarić, Jan Peters, Lerrel Pinto, Robert Platt, Nancy Pollard; and bottom row, left to right: Alessandro Rizzo, Oren Salzman, Roland Siegwart, Pratap Tokekar, James Wang, Shenlong Wang, and Yuke Zhu are among the recipients from the Amazon Research Awards Fall 2021 call for proposals under the Robotics CFP.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Top row, left to right:NAMES; second row, left to right:NAMES are among the recipients from the Amazon Research Awards Winter 2022 call for proposals under the Alexa: Fairness in AI CFP.
Top row, left to right:NAMES; second row, left to right:NAMES are among the recipients from the Amazon Research Awards Winter 2022 call for proposals under the Alexa: Fairness in AI CFP.

"Research in automated reasoning is deeply intertwined with a broad range of other research areas, touching machine learning, hardware and software engineering, robotics, and life sciences," said Daniel Kroening, an Automated Reasoning Group senior principal scientist. "The 2021 Amazon Research Awards reflect this breadth, and the interdisciplinary nature of research that is necessary to take computing one step closer to that magic spark that drives human reasoning."

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The table below lists, in alphabetical order, Fall 2021 cycle call-for-proposal recipients.

Recipient

University

Research title

Aws Albarghouthi

University of Wisconsin-Madison

Teaching SMT Solvers Probability Theory

Nada Amin

Harvard University

Extensible Models and Proofs

Nora Ayanian

Brown University

Large-Scale Labeled Multi-Agent Pathfinding for Warehouses

Clark Barrett

Stanford University

HydraScale: Solving SMT Queries in the Serverless Cloud

Ivan Beschastnikh

University of British Columbia

Compiling Distributed System Models into Implementations

Nicola Bezzo

University of Virginia

Towards Safe and Agile Robot Navigation in Occluding and Dynamic Environments

William Bowman

University of British Columbia

Static reasoning for memory in compilers and intermediate languages

Yinzhi Cao

Johns Hopkins University

Automatic Static Resource Analysis for Serverless Computing

Luca Carlone

Massachusetts Institute of Technology

Real-time Spatial AI for Robotics

Trevor Carlson

National University of Singapore

Accelerating SAT Solving with a Flexible FPGA-Programming Platform

Marsha Chechik

University Of Toronto

Unsatisfiability Proofs for Monotonic Theories

Venanzio Cichella

University Of Iowa

Concurrent allocation and planning for large-scale multi-robot systems

Cas Cremers

CISPA Helmholtz Center for Information Security

KeyLife: Automated Formal Analysis for Key Lifecycles in Security Protocols with Policies, Delegation, and Compromise

Elizabeth Croft

Monash University

Help me!: Humans supporting robots through Augmented Reality

Jia Deng

Princeton University

Optimization-Inspired Neural Networks for Visual SLAM

Derek Dreyer

MPI - SWS

RefinedRust: Automating the Verification of Rust Programs in the Presence of Unsafe Code

Tudor Dumitras

University of Maryland, College Park

Mitigating the impact of behavior variability and label noise on ML-based malware detectors

Nima Fazeli

University of Michigan

Object Manipulation with High-Resolution Tactile Sensors

Earlence Fernandes

University of Wisconsin-Madison

Verifiable Distributed Computation

Marcelo Frias

Buenos Aires Institute of Technology

Modular Bounded Verification with Expressive Contracts

Sicun Gao

University of California, San Diego

Interior Search Methods in SMT

Maani Ghaffari-Jadidi

University of Michigan

Robust low-cost dead reckoning and localization for home robotics using invariant state estimation

Roberto Giacobazzi

University of Verona

Implicit program analysis

Ronghui Gu

Columbia University

Learning Inductive Invariants for Real Distributed Protocols

Grace Gu

University of California, Berkeley

Deep learning-enabled robust grasping for pneumatic actuators

Leonidas Guibas

Stanford University

GeneralPurpose 3D Perception of Object Functionality

Arie Gurfinkel

University of Waterloo

Formal Proofs for Trusted Execution Environments

Hamed Haddadi

Imperial College London

Auditable Model Privacy using TEEs

Felix Heide

Princeton University

Inverse Neural Rendering

Ralph Hollis

Carnegie Mellon University

Low Cost Dynamic Mobile Robots for Research and Teaching

Hongxin Hu

SUNY, Buffalo

Explaining Learning-based Intrusion Detection Systems for Active Intrusion Responses

Jean-Baptiste Jeannin

University of Michigan-Ann Arbor

Automatic Verification of Distributed Systems Implementations

Robert Katzschmann

ETH Zurich

Design and Control Optimization of Soft Gripper Mechanisms for Manipulation

Anirudh Sivaraman Kaushalram

New York University

Observing and controlling microservice deployments

Steve Ko

Simon Fraser University

Practical Symbolic Execution for Rust

Sven Koenig

University of Southern California

Hybrid Search- and Traffic-Based MAPF Systems for Fulfillment Centers

George Konidaris

Brown University

Learning Composable Manipulation Skills

Emmanuel Letouzé

Pompeu Fabra University

Leveraging Digital Data for Monitoring Human Rights and Social Dynamics Along and Around Value Chains

Sergey Levine

University of California, Berkeley

Robotic Learning with Reusable Data

Jennifer Lewis

Harvard University

Computational Co-Design of Dexterous Rigid-Soft Grippers With Intrinsic Tactile-Sensing-Based Control

Maja Matarić

University of Southern California

Learning User Preferences for In-Home Robots Through In Situ Augmented Reality

James Noble

Victoria University Of Wellington

“Programming Made Hard” Made Easier: Improving Dafny’s Human Factors

Rohan Padhye

Carnegie Mellon University

Coverage-Guided Property-Based Testing of Concurrent Programs

Jan Peters

TU Darmstadt

Learning Robot Manipulation from Tactile Feedback

Lerrel Pinto

New York University

Visual Imitation in the Wild through Decoupled Representation Learning

Robert Platt

Northeastern University

On-robot manipulation learning via equivariant models

Nancy Pollard

Carnegie Mellon

Contact Areas for Manipulation Capture, Retargeting, and Hand Design

Pavithra Prabhakar

Kansas State University

Conformance Checking of Evolving ML Software Systems

Francesco Ranzato

University of Verona

Implicit program analysis

Sanjay Rao

Purdue University

Answering counterfactuals from offline data for video streaming

Bruno Ribeiro

Purdue University

Answering counterfactuals from offline data for video streaming

Talia Ringer

University of Illinois Urbana-Champaign

Neurosymbolic Proof Synthesis & Repair

Alessandro Rizzo

Politecnico di Torino

Physics-Informed Machine Learning for Trustworthy Control of Autonomous Robots

Camilo Rocha

Pontificia Universidad Javeriana Cali

Probabilistic and Symbolic Tools for P Program Verification

Andrei Sabelfeld

Chalmers University of Technology

DeepCrawl: Automated Reasoning for Deep Web Crawling

Oren Salzman

Technion - Israel Institute of Technology

Increasing throughput in automated warehouses via environment manipulation

Ilya Sergey

National University of Singapore

Scaling Automated Verification of Distributed Protocols with Specification Transformation and Synthesis

Michele Sevegnani

University of Glasgow

From Whiteboards to Models: Diagrammatic Formal Modelling for Everyone

Roland Siegwart

ETH Zurich

Autonomous Navigation of Aerial Robotic Manipulators in Unstructured Indoor and Outdoor Environments

Ramesh Sitaraman

University of Massachusetts Amherst

Design and Evaluation of ABR Algorithms for High-Performance Video Delivery

Fu Song

ShanghaiTech University

Efficient and Precise Verification for Constant-Time and Time-Balancing of Cryptosystems

Zhendong Su

ETH Zurich

Practical Techniques for Reliable, Robust and Performant SMT Solvers

Jiliang Tang

Michigan State University

Taming Graph Anomaly Detection via Graph Neural Networks

Pratap Tokekar

University of Maryland, College Park

Multi-Robot Coordination through the Lens of Risk

Daniel Varro

McGill University

Graph Solver as a Service

Yakir Vizel

Technion - Israel Institute of Technology

Quantified Invariants

David Wagner

University of California, Berkeley

Machine Learning for Malware Detection: Robustness against Concept Drift

James Wang

Pennsylvania State University

Affective and Social Interaction between Human and Intelligent Machine in Daily Activities

Shenlong Wang

University of Illinois Urbana-Champaign

Safely Test Autonomous Vehicles with Augmented Reality

Thomas Wies

New York University

A Modular Library of Verified Concurrent Search Structure Algorithms

Anton Wijs

Eindhoven University of Technology

Many-Core Acceleration of State Space Construction and Analysis

Xinyu Xing

Northwestern University

Battling Noisy-label Classification

Meng Xu

University Of Waterloo

Finding Specification Blind Spots with Fuzz Testing

Yuke Zhu

University of Texas at Austin

Interactive Learning Framework for Building Structured Object Models from Play

Andrew Zisserman

University of Oxford

Audio-Visual Synchronisation for General Videos

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
IN, TS, Hyderabad
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Hyderabad office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows from Originals and Exclusive content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at any time and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on We are seeking an exceptional Applied Scientist to join our Prime Video Sports personalization team in Israel. Our team is dedicated to developing state-of-the-art science to personalize the customer experience and help customers seamlessly find any live event in our selection. You will have the opportunity to work on innovative, large-scale projects that push the boundaries of what's possible in sports content delivery and engagement. Your expertise will be crucial in tackling complex challenges such as information retrieval, sequential modeling, realtime model optimizations, utilizing Large Language Models (LLMs), and building state-of-the-art complex recommender systems. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Personalization, Information Retrieval, and Recommender Systems, or general ML to develop new algorithms and end-to-end solutions. As part of our team of applied scientists and software development engineers, you will be responsible for researching, designing, developing, and deploying algorithms into production pipelines. Your role will involve working with cutting-edge technologies in recommender systems and search. You'll also tackle unique challenges like temporal information retrieval to improve real-time sports content recommendations. As a technologist, you will drive the publication of original work in top-tier conferences in Machine Learning and Recommender Systems. We expect you to thrive in ambiguous situations, demonstrating outstanding analytical abilities and comfort in collaborating with cross-functional teams and systems. The ideal candidate is a self-starter with the ability to learn and adapt quickly in our fast-paced environment. About the team We are the Prime Video Sports team. In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis majors like Roland-Garros and English Premier League to list a few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.